• Title/Summary/Keyword: Alumina Powder

Search Result 413, Processing Time 0.031 seconds

Powder Injection Molding of Alumina Parts Using a Binder System Based in Paraffin Wax and High Density Polyethylene

  • Thomas-Vielma, P.;Cervera, A.;Levenfeld, B.;Varez, A.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.207-208
    • /
    • 2006
  • In this experimental work, the development of a multicomponent binder system based on high density polyethylene (HDPE) and paraffin wax for Powder Injection Molding of Alumina $(Al_2O_3)$ parts was carried out. The optimum composition of the injection mixture was established through mixing torque measurements and a rheological study. The maximum powder loading was 58 vol%. The miscibility of organic components and the optimum injection temperature was evaluated by thermal characterization of binder and feedstock. The thermal debinding cycle was developed on the basis of thermogravimetrical analysis of the binder. After sintering the densities achieved were closed to 98% of the theoretical one.

  • PDF

Thermoanalytical Measurements of Shocked Alumina Powder (폭발 충격을 받은 Alumina 분말의 열분석)

  • 김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.14 no.3
    • /
    • pp.178-181
    • /
    • 1977
  • 급격하게 충격을 받은 Linde A alumina분말에 대해서 동적시차열량 계법(dynamic differential calorimetry)으로 잔류응력 energy를 촉정 조사하고 투과전자현미경으로 결함구조를 조사하였다. 충격을 받지않은 alumina분말과 비교해 보면 충격을 받은 분말을 대개 80$0^{\circ}C$ 내지 120$0^{\circ}C$범위에서 energy 방출을 보여 주었으며, 충격을 받은 대다수의 $\alpha$-alumina결정들은 변형으로 인한 결함구조를 보여 주었다.

  • PDF

Selective Laser Sintering of Alumina Using an Inorganic Binder Monoclinic $HBO_2$ and Post-Processing

  • 이인섭
    • Journal of Powder Materials
    • /
    • v.5 no.3
    • /
    • pp.199-209
    • /
    • 1998
  • A new low melting inorganic binder, monoclinic $HBO_2$, has been developed for Selective Laser Sintering (SLS) of alumina powder by dehydration process of boron oxide powder in a vacuum oven at $120^{\circ}C$. It led to better green SLS parts and higher bend strength far green and fired parts compared to other inorganic binders such as aluminum and ammmonium phosphate. This appeared to be due to its low viscosity and better wettability of the alumina particle surface. A low density single phase ceramic, aluminum borate ($Al_{18}B_4O_{33}$), and multiphase ceramic composites, $A_{12}O_3-A_{14}B_2O_9$, were successfully developed by laser processing of alumina-monoclinic $HBO_2$ powder blends followed by post-thermal processing; both $Al_{18}B_4O_{33}$ and $A_{14}B_2O_9$ have whisker-like grains. The physical and mechanical properties of these SLS-processed ceramic parts were correlated to the materials and processing parameters. Further densification of the $A_{12}O_3-A_{14}B_2O_9$ ceramic composites was carried out by infiltration of colloidal silica, and chromic acid into these porous SLS parts followed by heat-treatment at high temperature ($1600^{\circ}C$). The densities obtained after infiltration and subsequent firing were between 75 and 80% of the theoretical densities. The bend strengths are between 15 and 33 MPa.

  • PDF

Evaluation of Gelation Characteristics with The Variation of Additive Contents in The Alumina Slurry for Gel Casting Process (겔 캐스팅 공정을 위한 알루미나 슬러리에서의 첨가제 함량 변화에 따른 겔화특성 평가)

  • Chung, J.K.;Oh, C.Y.;Ha, T.K.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.290-295
    • /
    • 2022
  • Recently, the use of high-tech ceramic parts in functional electronic parts, automobile parts and semiconductor equipment parts is increasing. These ceramics materials are required to have high reproducibility, reliability, large size and complex shapes. The researchers initiated the work to develop a new shaping method called gel casting, which allows high performance ceramic materials with a complex shape to be produced. The manufacturing process parameters of gel casting include uniform mixing of the initiator, bubble removal, and slip injection. In this study, we analyzed the dispersion and gelation characteristics according to the change in the additive content of the alumina slurry in the gel casting process. The alumina slurry for gel casting was prepared by mixing a solvent, a monomer and a dispersant through a ball mill. Alumina powder and a gelation initiator were added to the mixed solution, and ball milling was performed for 24 hours. A viscosity of 6,435 cps and a stable zeta potential value were obtained under the conditions of alumina powder content of 55 vol% and dispersant 2.0 wt%. After curing for 12 hours by adding aps 0.1wt%, TEMED 0.2wt%, and Monomer 3, 5wt%, it was possible to separate from the molding cup, confirming that the gelation was completed.

Effects of Alumina Powder on the Properties of Mica Sheet Impregnated with Silicone Rubber Resin (알루미나 분말의 첨가에 따른 실리콘고무수지 함침 마이카시트의 특성)

  • Park Hyo-Yul;Kang Dong-Pil;Ahn Myeong-Sang;Myung In-Hye
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.12
    • /
    • pp.561-566
    • /
    • 2005
  • This paper describes electrical resistivity, dielectric strength, thermal conductivity, thermal stability and tensile strength of mica sheet impregnated with silicone rubber resin or silicone rubber resin containing alumina powder. The mica sheet impregnated with silicone rubber resin had higher electrical resistivity, dielectric strength and tensile strength than those of virgin mica sheet. Electrical resistivity of mica sheet impregnated with silicone rubber resin containing alumina increased with increasing the amount of alumina. However, dielectric strength and tensile strength of mica sheet impregnated with silicone rubber resin containing alumina decreased with increasing the amount of alumina. The mica sheet impregnated with silicone rubber resin had lower thermal conductivity than that of virgin mica sheet. However, thermal conductivity of mica sheet impregnated with silicone rubber resin conatining alumina increased with increasing the amount of alumina. In the case of thermal stability, thermal degradation of virgin mica sheet and impregnated mica sheet with silicone rubber resin did not occur up to $1100^{\circ}C$ and $400^{\circ}C$, respectively.

Preparation of Alumina and Amorphous Silica from Clay Minerals (점토광물로부터 알루미나 및 비정질 실리카 제조에 관한 연구)

  • 박희찬;조원제;강효경;손명모
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.1
    • /
    • pp.81-90
    • /
    • 1989
  • High purity alumina and amorphous silica were prepared from Ha-dong kaolin by means of appliance of sulfuric acid. The effect of sulfuric acid concentration, reaction temperature and reaction time on the formation of aluminum sulfate was investigated. The precipitation conditions ofaluminum sulfate from the sulfuric acid solution with ethanol and ammonium hydroxide were deteremined. In the optimum condition, the conversion of aluminum oxide in kaolin to aluminum oxide powder was 85.0 percent. Alumina powder was prepared by calcination of the precipitates, and its purity was 99.0 percent.

  • PDF

Properties of Alumina Powder Prepared by Precipitation Method(II) : Properties of Alumina Powder on Heat-Treatment (침전법으로 제조한 Alumina 분말의 특성(II) : 열처리에 따른 Alumina 분말의 특성)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.3
    • /
    • pp.193-200
    • /
    • 1988
  • The starting materials were aluminum hydroxide prepared by precipitation method at the conditions of pH values; 7, 9, 10 and 11. The properties of alumina powder on heat-treatment were studied. After dehydrating structural water from amorphous aluminum hydroxide, the first formed phase was amorphous alumina and its specific surface are was decreased. The specific surface area was increased by dehydration of structural water from aluminum hydroxides except amorphous aluminum hydroxide. The specific surface area was increased with increase of the ratio of A1OOH to $A1(OH)_3$ in the region of transition aluminas. The rate of transition from aluminum hydroxide to alpha alumina occurred in the order of 7, 10, 9 and 11 of pH values. The morphology of alpha alumina powders was skeleton particles remaining outer shape of aluminum hydroxide. Both the elevation of heat-treatment temperature and the transition toalpha alumina decreased specific surface area and brought about the growth of particles.

  • PDF

Synthesis and Characterization of Particle-filled Glass/G lass-Ceramic Composites for Microelectronic Packaging (I)

  • Hong, Chang-Bae;Lee, Kyoung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.1
    • /
    • pp.11-21
    • /
    • 1999
  • For microelectronic packaging application, the crystallizable glass powder in CaO-$A1_2O_3-SiO_2-B_2O_3$system was mixed with various amounts of alumina inclusions (\approx 4 $\mu \textrm{m}$), and its sintering behavior, crystallization behavior, and dielectric constant were examined in terms of vol% of alumina and the reaction between the alumina and the glass. Sintering of the CASB glass powder alone at $900^{\circ}C$ resulted in full densification (99.5%). Sintering of alumina-filled composite at $900^{\circ}C$ also resulted in a substantial denslfication higher than 97% of theoretical density, In this case, the maximum volume percent of alumina should be less than 40%. XRD analysis revealed that there was a partial dissolution of alumina into the glass. This alumina dissolution, however, did not show the particle growth and shape accommodation. Therefore, the sintering of both the pure glans and the alumina-filled composite was mainly achieved by the viscous flow and the redistribution of the glass. Alumina dissolution accelerated the crystallization initiation time at $1000^{\circ}C$ and hindered the densification of the glass. Dielectric constants of both the alumina-filled glass and the glass-ceramic composites were increased with increasing alumina content and followed rule of mixture. In case of the glass-ceramic matrix composites showed relatively lower dielectric constant than the glass matrix composite. Furthermore, as alumina content increased, crystallization behavior of the glass was changed due to the reaction between the glass and the alumina. As alumina reacted with the glass matrix, the major crystallized phase was shifted from wollastonite to gehlenite. In this system, alumina dissolution strongly depended on the particle size: When the particle size of alumina was increased to 15 $\mu\textrm{m}$, no sign of dissolution was observed and the major crystallized phase was wollastonite.

  • PDF

Effects of Volume Fraction & Particle Size of Alumina on Sintering Behaviors of the Glass-Alumina Composites for Low Firing Temperature (저온 소성용 유리-알루미나 복합체에서 알루미나의 부피분율과 입자크기에 따른 소결 거동)

  • 박덕훈;김봉철;김정주;박이순
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.638-644
    • /
    • 2000
  • The sintering behaviors of the glass-alumina composites for low firing temperature were investigated as functiions of the volume fraction of alumina powder and the particle size with respect to porosity and pore shape. As the volume fraction of alumina powder was increased or the particle size of it was decreased, the sintering temperature of open pore-closing was raised. When the volume fractions of alumina which had 2.19$\mu\textrm{m}$ median diameter were increased with 20, 30, 40, and 50%, the sintering temperatures of open pore-closing were 425, 450, 475, and 500$^{\circ}C$. And when the median particle size of alumina was diminished from 2.19$\mu\textrm{m}$ to 0.38$\mu\textrm{m}$, the sintering temperature of open pore-closing was increased from 450$^{\circ}C$ to 475$^{\circ}C$. Especially, the sintering temperature, which showed maximum density, was corresponded with the stage of open pore-closing and after achieving maximum density over heating resulted in dedensification of specimen, so called, over-firing behavior.

  • PDF

The Sintering Mechanism and Crystallization Characteristics of Alumina-filled Cordierite-type Glass-ceramics (알루미나를 첨가한 코디어라이트계 결정화 유리의 소결거동 및 결정화 특성)

  • 박정현;노재호;성재석;구기덕
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.7
    • /
    • pp.706-714
    • /
    • 1998
  • The MgO-{{{{ { {Al }_{2 }O }_{3 } }}-{{{{ { {SiO }_{2 } }_{ } }}system containing alumina powder was fabricated sintered at various temperature and analyzed in order to study the sintering mechanism and crystallization characteristics. The specimen composed of glass powder with average particle size of 8.27 $\mu\textrm{m}$ and 0-40 vol% alumina powder were sint-ered for 3 hrs at the temperature between 850$^{\circ}C$ and 1350$^{\circ}C$ The sintering mechanism consists of the redis-tribution of particles occuring at 750$^{\circ}C$ and the viscous flow at 850∼950$^{\circ}C$. The degree of crystallization and sintering temperatue were dependent upon the ratio of glass/alumina. The second phase from the reaction between glass and alumina was not observed which was confirmed by XRD and properties analysis. The density dielectric constant and specific resistivity of specimen were 2.30∼3.26g/cm2 5.8∼7.38 at 1 GHz density dielectric constant and specific resistivity of specimen were 2.30∼3.26g/cm3 5.8∼7.38 at 1GHz and 1.23∼4.70${\times}$107 $\Omega$$.$m respectively.

  • PDF