• 제목/요약/키워드: Alumina Ceramics

검색결과 310건 처리시간 0.026초

알루미나의 레이저 절단 가공 시 균열 발생의 확률모델링 (A Probabilistic Model for Crack Formation in Laser Cutting of Ceramics)

  • 최인석;이성환;안선응
    • 한국정밀공학회지
    • /
    • 제19권9호
    • /
    • pp.90-97
    • /
    • 2002
  • Ceramics are being increasingly used in industry due to their outstanding physical and chemical properties. But these materials are difficult to machine by traditional machining processes, because they are hard and brittle. Recently, as one of various alternative processes, laser-beam machining is widely used in the cutting of ceramics. Although the use of lasers presents a number of advantages over other methods, one of the problems associated with this process is the uncertain formation of cracks that result from the thermal stresses. This paper presents a Bayesian probabilistic modeling of crack formation over thin alumina plates during laser cutting.

세라믹스의 축열연소시스템 응용 (Ceramic Application for Regenerative Burner System)

  • 한동빈;박병학;김영우;배원수
    • 한국세라믹학회지
    • /
    • 제36권5호
    • /
    • pp.497-503
    • /
    • 1999
  • Recently regenerative burner system was developed and begins to be gradually used for better energy savings. Compared to conventional burner system the regenrative one has the several merits such as higher fuel efficiency light weigh of apparatus low harmful toxic gas and homogeneous heating zone etc. The regenerative material a very important component of the new regenerative burner system should possess the properties of low specific density higher surface area and high specific heat capacity. Ceramics is the best regenerative material because of stable mechanical properties even at high temperature and better thermal properties and excellent chemical stability. In this study alumina ball alumina tube 3-D ceramic foam and hoeycomb as regenerative materials were tested and evaluated. The computer silumation was conducted and compared to the result of field test. This paper is aimed to introduce a new application of ceramics at high temperature.

  • PDF

저급점토를 이용한 다공성 세라믹스 제조 (Preparation for Porous Ceramics Using Low Grade Clay)

  • 한상목;신대용;강상규
    • 한국세라믹학회지
    • /
    • 제35권6호
    • /
    • pp.575-582
    • /
    • 1998
  • Sutiability of Jungsan clay shale dolomite sludge Anyang feldspar and alumina as raw materials for light-weight porous ceramics was examined. In order to find optimum manufacturing conditions compositions heating temperatuers and heating times were varied and their effects on physical properties were measured and bloating mechanism was investigated. Jungsan clay seems suitable as raw material to make the light-weight constructional materials with 5wt% of ANyang feldspar and alumina added in calcined clay (800$^{\circ}C$) having bulk density of 0.45g/cm3 water absorption of 1.34% and compressive strength of 85kg/cm2 rapid-heated at 1200$^{\circ}C$ for 30min. It is suggested that bloating mechanism depends on the difference of tem-peratures between the inside and outside in specimen the remained gases in interstices can bloat by the li-quid phase of surface with high viscosity and gas pressure at elevated temperature.

  • PDF

용융침투법으로 제조한 유리-알루미나 복합체: Ⅰ. 알루미나 입도 효과 (Glass-alumina Composites Prepared by Melt-infiltration: Ⅰ. Effect of Alumina Particle Size)

  • 이득용;장주웅;김대준;박일석;이준강;이명현;김배연
    • 한국세라믹학회지
    • /
    • 제38권9호
    • /
    • pp.799-805
    • /
    • 2001
  • 상용 알루미나 분말(0.5${\mu}$m, 3${\mu}$m)을 die-press법을 이용하여 1120$^{\circ}$C에서 2시간 1차 소결하여 다공성 전성형체를 제조하고 1100$^{\circ}$C에서 4시간 $La_2O_3-Al_2O_3-SiO_2$계 유리를 용융 침투시켜 치밀한 유리-알루미나 복합체를 제조하였다. 알루미나 입도가 유리-알루미나 복합체의 충진율, 미세조직, 젖음성, 기공률 및 크기, 기계적 특성에 미치는 영향을 조사하였다. 입도 범위가 0.1∼48${\mu}$m로 넓고 bimodal size 입도 분포를 가지면서 random orientation을 가진 3${\mu}$m 알루미나가 분산된 복합체가 최적의 기계적 특성 및 충진률이 관찰되었으며 강도와 인성값은 각각 519MPa, $4.5MPa{\cdot}m^{1/2}$이었다.

  • PDF

Sintering and Microstructure of Alumina/Mica and Spinel/Mica Composites

  • Suzuki, Sofia-Saori;Taruta, Seiichi;Takusagawa, Nobuo
    • The Korean Journal of Ceramics
    • /
    • 제4권4호
    • /
    • pp.363-367
    • /
    • 1998
  • Alumina/mica and spinel/mica composites were fabricated by sintering of compacts containing 20 mass% fluoromica ($KMg_3AlSi_3O-{10}F_2$) glass and alumina or spinel. In both composites, mica precipitated as plate-like crystals at temperatures lower than $1300^{\circ}C$ and melted at $1300^{\circ}C$ to $1400^{\circ}C$. In alumina/mica composites, alumina and glass reacted to produce spinel, and the densification progressed by the solution-precipitation of alumina. Consequently, the glass composition changed and the mica did not precipitate at temperatures higher than $1400^{\circ}C$. However, mica precipitated after a reheating process. In spinel/mica composites, the glass composition did not change. After the mica phase melted, it recrystallized during slow cooling. The relative density reached the maximum at $1500^{\circ}C$ for alumina/mica and at $1300^{\circ}C$ spinel/mica composites, and decreased at further high temperatures.

  • PDF

산화물과 금속 복합 분말의 Attrition Milling 및 반응소결: I. 분말의 특성에 따른 분쇄 거동 (Attrition Milling and Reaction-Sintering of the Oxide-Metal Mixed Powders: I. Milling Behavior as the Powder Characteristics)

  • 황규홍;박정환;윤태경
    • 한국세라믹학회지
    • /
    • 제31권3호
    • /
    • pp.337-345
    • /
    • 1994
  • The reaction-sintered alumina and zirconia-alumina ceramics having low firing shrinkage were prepared from the Al/Al2O3 or Al/ZrO2(Ca-PSZ) powder mixtures via the attrition milling. And in this milling process the effect of the characteristics of used powders was investigated. Attrition milling was much more effective in reducing the particle size of ceramic/metal mixed powders than ball milling. Powder mixtures of flake-type Al with coarse alumina was much more effectively comminuted by the attrition milling than the mixtures of globular-type Al with coarse alumina powders. And coarse alumina than fine alumina was much more beneficial in cutting and reducing the ductile Al particles. In the contrary to Al/Al2O3 powder mixtures, Al/ZrO2 powder mixtures was not effectively comminutd. But whether using the alumina ball media or attrition milled with Al2O3 powder rather than Al, the milling efficiency was much more increased.

  • PDF

Nanostructured Bulk Ceramics (Part I)

  • Han, Young-Hwan;Mukherjee, Amiya K.
    • 한국세라믹학회지
    • /
    • 제46권3호
    • /
    • pp.225-228
    • /
    • 2009
  • The processing and characterization of ceramic nanocomposites, which produce bulk nanostructures with attractive mechanical properties, have been emphasized and introduced at Prof. Mukherjee's Lab at UC Davis. The following subjects will be introduced in detail in Part II, III, and IV. In Part II, the paper will describe a three-phase alumina-based nanoceramic composite demonstrating superplasticity at a surprisingly lower temperature and higher strain rate. The next part will show that an alumina-carbon nanotube-niobium nanocomposite produced fracture toughness values that are three times higher than that of pure nanocrystalline alumina. It was possible to take advantage of both fiber-toughening and ductile-metal toughening in this investigation. In the fourth section, discussed will be a silicon-nitride/silicon-carbide nanocomposite, produced by pyrolysis of liquid polymer precursors, demonstrating one of the lowest creep rates reported so far in ceramics at the comparable temperature of $1400^{\circ}C$. This was first achieved by avoiding the oxynitride glass phase at the intergrain boundaries. One important factor in the processing of these nanocomposites was the use of the electrical field assisted sintering method. This allowed the sintering to be completed at significantly lower temperatures and during much shorter times. These improvements in mechanical properties will be discussed in the context of the results from the microstructural investigations.

알루미나 세라믹에 대한 열충격 손상의 비파괴적 평가 (Nondestructive Evaluation of Thermal Shock Damage for Alumina Ceramics)

  • 이준현;이진경;송상헌
    • 대한기계학회논문집A
    • /
    • 제25권8호
    • /
    • pp.1189-1196
    • /
    • 2001
  • The objective of this paper is to investigate the applicability of acoustic emission(AE) technique to monitor the progress of the thermal shock damage on alumina ceramic. For this purpose, alumina ceramic specimen was heated in the furnace and then was quenched in the water tank. When the specimen was quenched in the water tank, complex AE signals due to the initiation of micro-cracks and boiling effect were generated by the progress of thermal shock damage. These mixed AE signals have to be classified for monitoring the degree of the thermal shock damage of alumina ceramics. In this paper, the mixed AE signals generated from both the boiling effect and the crack initiation under thermal shock test was analyzed. The characteristics of AE signals were also discussed by considering the variation of bending strength and Yongs modulus of specimens.

Effect of Reinforcing Materials on Properties of Molten Carbonate Fuel Cell Matrices

  • Moon, Young-Joon;Lee, Dokyol
    • The Korean Journal of Ceramics
    • /
    • 제2권3호
    • /
    • pp.142-146
    • /
    • 1996
  • The molten carbonate fuel cell matrices, which are usually made of high surface, fine particle size ${\gamma}-LiAlO_2$ are reinforced with coarse particles of the same material and alumina fibers. An the effects of reinforcing materials on pore characteristics, sintering properties and mechanical properties of the matrices are examined.Among the matrices examined, the highest mechanical reinforcement has been achieved in the one containing 10 wt.% coarse particles and 20 wt.% alumina fibers.

  • PDF

La-$\beta$-Aluminate의 형성이 $\alpha$-Alumina의 기계적 성질에 미치는 영향 (Formation of La-$\beta$-Aluminate in $\alpha$-Alumina Matrix and Its Influence on Mechanical Properties)

  • 강석원;고재웅;김해두
    • 한국세라믹학회지
    • /
    • 제29권1호
    • /
    • pp.23-28
    • /
    • 1992
  • Alumina ceramics was reinforced by in-situ formation of La-${\beta}$-aluminate in ${\alpha}$-alumina matrix. The powder mixture of which composition is (100-12x)Al2O3+x(La2O3+11Al2O3) was prepared for the formation of La-${\beta}$-aluminate in ${\alpha}$-alumina matrix. The amount of La-${\beta}$-aluminate in the matrix was controlled by varing x which is number of moles. The dense composite was produced by sintering at 1600$^{\circ}C$ in air or hot-pressing at 1550$^{\circ}C$ under 30 MPa. Bending strength and fracture toughness were increased, resulting from the grain growth inhibition and the crack deflection and crack bridging mechanism when La-${\beta}$-aluminate was produced in ${\alpha}$-alumina matrix.

  • PDF