• Title/Summary/Keyword: Alumina Ceramic

Search Result 883, Processing Time 0.026 seconds

Preparation and Properties of Magnesia-Alumina Spinel by SHS (SHS 법에 의한 Magnesia-Alumina Spinel 제조와 특성)

  • 최태현;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.235-241
    • /
    • 1996
  • Self-Propagating high temperature synthesis(SHS) technique was used to synthesize the spinel phase of MgAl2O from MgO and Al powder. Processing factors such as mixing time preheating temperature and ignition catalyst were varied to determine the optimum condition to form MgAl2O4 phase. The reaction products were heat treated at the temperature range of 120$0^{\circ}C$ and 150$0^{\circ}C$. to observe phase transformation of unreacted materials. Processing factors such as 48 hrs-mixing 80$0^{\circ}C$-preheating and 20wt% KNO3-ignition catalyst were effective of the formation of MgAl2O spinel. An activation energy 49.7kcal/mol. was calculated to form a MaAl2O4 spinel from unreacted materials.

  • PDF

Contact Damage and Fracture of Poreclain/Glass-Infiltrated Alumina Layer Structure for Dental Application (치아 응용을 위한 /유리침윤 알루미나 이중 층상구조의 접촉손상 및 파괴)

  • 정연길;여정구;최성설
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1257-1265
    • /
    • 1998
  • Hertzian contact tests were used to investigate the evolution of fracturedamage in the coating layer as functions of contact load and coating thickness by studying crack patterns in porcelain on glass-infiltrated alumina bilayer system conceived to simulate the crown structure of a tooth. Cone cracks initiated at the coating top surface without delamination at interface and crack propagation to substrate. Preferentially the cracks made multi-cracks at the coating top surface rather than proceeding to interface. The cracks were highly stabilized with wide ranges between the loads to initiate first cracking and to cause final failure im-plying damage-tolerant capability. Finite element modelling was used to evaluate the stress distribution. Maximum tensile stress were responsible for the cracking at the coating layer and had a profound influence on the crack pattern and fracture damage in the layered structure materials.

  • PDF

Effects of SiC Whisker and Particle on Mechanical Properties and Microstructure of Alumina Composites (알루미나 복합재료의 기계적 성질과 미세조직에 미치는 SiC 휘스커 및 입자 첨가의 영향)

  • 이영규;김준규;조원승;최상욱
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.9
    • /
    • pp.864-870
    • /
    • 2000
  • 알루미나 단미의 기계적 성질을 향상시키고자, 185$0^{\circ}C$에서 1시간 동안 열간 가압소결에 의하여 SiC 입자 및 SiC 휘스커를 단독으로 혹은 동시에 첨가한 알루미나 복합재료를 제조하여 기계적 성질과 미세조직을 조사하였다. 20vol%의 SiC 입자 혹은 휘스커 첨가에 의하여, 알루미나 복합재료의 강도는 단미의 360 MPa에서 각각 640 MPa, 650 Mpa로 향상되었다. 20vol%의 SiC 입자 혹은 휘스커를 첨가한 복합재료의 파괴인성은 각각 3.5 MPa.m$^{1}$2/, 5.5 MPa.m$^{1}$2/를 나타내었다. 20vol%의 SiC 휘스커와 2vol%의 SiC 입자를 동시 첨가한 다중강화 복합재료의 강도와 파괴인성은 각각 790 MPa, 5.0 MPa.m$^{1}$2/ 로 증가하였다. 이와 같이 알루미나 단미에 비해 강도 및 파괴인성이 향상된 것은 입자에 의한 결정립 미세화 효과와 휘스커에 의한 균열편향, pull-out의 영향으로 생각된다.

  • PDF

Effect of MgO on Microstructural Evolution of Alumina Prepared from Hydrosol-Gel Process of Boehmite in Plaster Mold (석고몰드속에서 Boehmite의 Hydrosol-Gel로부터 제조된 알루미나의 미세구조에 미치는 M\ulcorner의 영향)

  • 오경영;정창주
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.12
    • /
    • pp.1029-1038
    • /
    • 1993
  • The microstructures of aluminas, included of dissolved CaO as $\alpha$-alumina seeded pseudo-boehmite hydrosol was gelled in plaster mold and doped of MgO as dipping of calcines(120$0^{\circ}C$-2h) into Mg-nitrate solution, were compared to the one of which additives are excluded during the gellation. It was formed the boundary layer of 300~350${\mu}{\textrm}{m}$ distance from surface to the inside, containing of approximately 500ppm CaO by dissolved Ca from plaster mold. As the MgO addition to the boundary layer with dissolved CaO, the microstructure of the layer was uniformed and inhibited the grian growth, compared to one of that additives be excluded specimen and of MgO doped-inside region. This result was considered as abnormal grain growth and effect of flat boundary formation be appeared by effects of dissolved CaO, were decreased by MgO co-doping.

  • PDF

Preparation of Alumina Ceramics by Pressureless Powder Packing Forming Method: (I) Development of Pressureless Powders Packing Forming Method and Characterization of Green Body (무가압 분말 충전 성형법을 이용한 알루미나 세라믹스의 제조: (I) 무가압 분말 충전 성형법 개발 및 성형체 특성 관찰)

  • 박정현;성재석;이상진
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.1
    • /
    • pp.31-38
    • /
    • 1994
  • To overcome the demerit of conventional forming method, new forming method, pressureless powder packing forming method, was investigated. This technique is performed by powder packing followed by the infiltration of binder solution. Various alumina powders were used as starting materials and the powders showing good packing condition through powder packing experiment were chosen. The green densities prepared by this new forming method with these powders were lower than those of specimens by pressing method, but, nearly same density was obtained in case of green body prepared with the powders having high packing density. The distribution of binder in a green body was homogeneous and it was possible to a complex shape form by this forming method.

  • PDF

Preparation for Porous Ceramics Using Low Grade Clay (저급점토를 이용한 다공성 세라믹스 제조)

  • 한상목;신대용;강상규
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.6
    • /
    • pp.575-582
    • /
    • 1998
  • Sutiability of Jungsan clay shale dolomite sludge Anyang feldspar and alumina as raw materials for light-weight porous ceramics was examined. In order to find optimum manufacturing conditions compositions heating temperatuers and heating times were varied and their effects on physical properties were measured and bloating mechanism was investigated. Jungsan clay seems suitable as raw material to make the light-weight constructional materials with 5wt% of ANyang feldspar and alumina added in calcined clay (800$^{\circ}C$) having bulk density of 0.45g/cm3 water absorption of 1.34% and compressive strength of 85kg/cm2 rapid-heated at 1200$^{\circ}C$ for 30min. It is suggested that bloating mechanism depends on the difference of tem-peratures between the inside and outside in specimen the remained gases in interstices can bloat by the li-quid phase of surface with high viscosity and gas pressure at elevated temperature.

  • PDF

Properties of Alumina Powder Prepared by Precipitation Method(I): Aluminum Hydrate (침전법으로 제조한 Alumina 분말의 특성(1): 알루미늄 수산\ulcorner루)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.2
    • /
    • pp.111-116
    • /
    • 1988
  • Aluminum hydrates were prepared by precipitation method using Al2(SO4)3$.$18H2O as a starting material and NH4OH as precipitation agent. The phases of aluminum hydrate were changed from amorphous aluminum hydrate to pseudo-boehmite of AlOOH form and bayerite, gibbsite, hydragillite and norstrandite of Al(OH)3 form with increasing pH. As pH increased, agglomeration phenomena were reduced. Aluminum hydrates of AlOOH and Al(OH)3 form represented dehydration of structural water near 175$^{\circ}C$ and 385$^{\circ}C$, and 280$^{\circ}C$, respectively. As the ratio of Al(OH)3 to AlOOH increased, specific surface area was reduced.

  • PDF

Formation of Beta-Alumina from Metalkoxide (금속알콕시이드로부터 $\beta$-Alumina의 생성)

  • 공용식;문종수;이서우
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.2
    • /
    • pp.136-142
    • /
    • 1988
  • β-Al2O3, which is used for solid electrolyte membrances in sodium-sulfur batteries, was prepared by sol-gel process. Sodium-n-propoxide NaOC3H7 and aluminum-isopropoxide Al(OC3H7)3 were hydrolyzated in the solution at pH 3, pH 7, pH 9 and pH 11, respectively. The sol-gel processed samples were calcined at several temperature steps, respectively and analysed by thermal analyser(DT-TGA), infrared spectrum analyser and X-ray diffraction analyser. The gelling rate of solution at pH 7 was much higher than that of the solution at pH 3. Thermal exchanging behavior of the gels at pH 3 were similar to Na2O·Al2O3·6H2O and, above pH 7, were similar to Na2O·Al2O3·3H2O. When samples' composition ratio was 9.13 : 90.87 [NaOC3H7:Al(OC3H7)3] at pH 7, β-Al2O3 was formed at 1100℃.

  • PDF

Properties of the Chemically Vapor Deposited Alumina Thin Film and Powder on Heat Treatment (CVD법으로 합성된 알루미나 박막 및 분말의 열처리에 따른 특성)

  • 최두진;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.2
    • /
    • pp.235-241
    • /
    • 1989
  • A study on the APCVD(atmospheric pressure chemical vapor deposition) Al2O3 was done by using the aluminum-tri-isopropoxide/N2 reaction system at 40$0^{\circ}C$. When the flow rate of the carrier gas(N2) was over 2SLPM, heterogeneous reaction was observed. However, when the flow rate of the carrier gas was below 2SLPM, a porously deposited film or powder formation was observed. The film formed by a heterogeneous reaction was optically dense. The dense film is thought to be a kind of a hydrated alumina. After a thermal treatment of the film in the range of temperature from $600^{\circ}C$ to 1, 20$0^{\circ}C$, properties of the film seems to be changed due to dehydration and densification process. In the case of the powder on heat treatment(600~1, 20$0^{\circ}C$), both a phase transformation and the change of OH peak was observed.

  • PDF

Alumina Extraction from Aluminium Silicates (규산염 알루미나 광으로부터 알루미나 추출에 관한 연구)

  • 신병식;맹중재
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.3
    • /
    • pp.182-186
    • /
    • 1981
  • The extraction of $Al_2O_3$ from the backed mixture of grinded aluminium silicates with $H_2SO_4$ and required heating energy for the baking process has been investigated. The extraction ration of $Al_2O_3$ from baked kaolin and alunite being mixed with 70-80% $H_2SO_4$ at 12$0^{\circ}C$ for 3 hours was more than 90%, the yield was based on alumina component in the ore by extracted with water. The required heating energy was 1782 cal/300gr (Alunite), that is, when alunite ore treated with equivalent amount of 80% $H_2SO_4$, also left it for 75 minites at 12$0^{\circ}C$, The required heating energy was 22, 553 cal/200gr(Alunite) when the above sample was heated again at 15$0^{\circ}C$ for 2 hours.

  • PDF