• Title/Summary/Keyword: Alumina Ceramic

Search Result 877, Processing Time 0.026 seconds

Selective Laser Sintering of Alumina Using an Inorganic Binder Monoclinic $HBO_2$ and Post-Processing

  • 이인섭
    • Journal of Powder Materials
    • /
    • v.5 no.3
    • /
    • pp.199-209
    • /
    • 1998
  • A new low melting inorganic binder, monoclinic $HBO_2$, has been developed for Selective Laser Sintering (SLS) of alumina powder by dehydration process of boron oxide powder in a vacuum oven at $120^{\circ}C$. It led to better green SLS parts and higher bend strength far green and fired parts compared to other inorganic binders such as aluminum and ammmonium phosphate. This appeared to be due to its low viscosity and better wettability of the alumina particle surface. A low density single phase ceramic, aluminum borate ($Al_{18}B_4O_{33}$), and multiphase ceramic composites, $A_{12}O_3-A_{14}B_2O_9$, were successfully developed by laser processing of alumina-monoclinic $HBO_2$ powder blends followed by post-thermal processing; both $Al_{18}B_4O_{33}$ and $A_{14}B_2O_9$ have whisker-like grains. The physical and mechanical properties of these SLS-processed ceramic parts were correlated to the materials and processing parameters. Further densification of the $A_{12}O_3-A_{14}B_2O_9$ ceramic composites was carried out by infiltration of colloidal silica, and chromic acid into these porous SLS parts followed by heat-treatment at high temperature ($1600^{\circ}C$). The densities obtained after infiltration and subsequent firing were between 75 and 80% of the theoretical densities. The bend strengths are between 15 and 33 MPa.

  • PDF

A Study on the Mechanical Properties and Residual Stresses of the Thermally Sprayed Alumina Ceramic Coating Layer (알루미나 세라믹(Alumina Ceramic) 코팅층의 기술적인 특성과 잔류응력의 해소에 관한 연구)

  • 김영식
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.88-97
    • /
    • 1996
  • The pupose of this study is to improve the mechanical properies and to evaluate the residual stresses of flame-sprayed Alumina ceramic coating layer. The first work in this study is to investigate the effects of strengthening heat treatments on the mechanical properties of coating layer. Strengthening heat treatments for sprayed specimens were carried out in vaccum furnace. The mechanical properties such as microhardness, thermal shock resistance, adhesive strength and erosion resistance were tested for the sprayed specimens after strengthening heat treatments. And it was clear that the mechanical properties of coating layer were much improved by strengthening heat treatments. The second work in this study is to evalute the residual stresses in coating lsyer by numerical analysis. FDM and FEM were used to analyze temperature distribution and residul stresses in coating layer. It was proved that are tensile stresses in coating layer and that residual stresses can be controlled by the appropriate selection of the spraying parameters such as preheat temperature, coating thickness and bond coat thickness.

  • PDF

A Study on the Mechanical Properties of Al2O3 Cutting Tools by DLP-based 3D Printing (DLP 기반 3D 프린팅으로 제조된 Al2O3 절삭공구의 기계적 물성 연구)

  • Lee, Hyun-Been;Lee, Hye-Ji;Kim, Kyung-Ho;Kim, Kyung-Min;Ryu, Sung-Soo;Han, Yoonsoo
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.508-514
    • /
    • 2019
  • In the development of advanced ceramic tools, material improvements and design freedom are critical in improving tool performance. However, in the die press molding method, many factors limit tool design and make it difficult to develop innovative advanced tools. Ceramic 3D printing facilitates the production of prototype samples for advanced tool development and the creation of complex tooling products. Furthermore, it is possible to respond to mass production requirements by reflecting the needs of the tool industry, which can be characterized by small quantities of various products. However, many problems remain in ensuring the reliability of ceramic tools for industrial use. In this study, alumina inserts, a representative ceramic tool, was manufactured using the digital light process (DLP), a 3D printing method. Alumina inserts prepared by 3D printing are pressurelessly sintered under the same conditions as coupon-type specimens prepared by press molding. After sintering, a hot isostatic pressing (HIP) treatment is performed to investigate the effects of relative density and microstructure changes on hardness and fracture toughness. Alumina inserts prepared by 3D printing show lower relative densities than coupon specimens prepared by powder molding but indicate similar hardness and higher fracture toughness values.

Effects of Volume Fraction & Particle Size of Alumina on Sintering Behaviors of the Glass-Alumina Composites for Low Firing Temperature (저온 소성용 유리-알루미나 복합체에서 알루미나의 부피분율과 입자크기에 따른 소결 거동)

  • 박덕훈;김봉철;김정주;박이순
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.638-644
    • /
    • 2000
  • The sintering behaviors of the glass-alumina composites for low firing temperature were investigated as functiions of the volume fraction of alumina powder and the particle size with respect to porosity and pore shape. As the volume fraction of alumina powder was increased or the particle size of it was decreased, the sintering temperature of open pore-closing was raised. When the volume fractions of alumina which had 2.19$\mu\textrm{m}$ median diameter were increased with 20, 30, 40, and 50%, the sintering temperatures of open pore-closing were 425, 450, 475, and 500$^{\circ}C$. And when the median particle size of alumina was diminished from 2.19$\mu\textrm{m}$ to 0.38$\mu\textrm{m}$, the sintering temperature of open pore-closing was increased from 450$^{\circ}C$ to 475$^{\circ}C$. Especially, the sintering temperature, which showed maximum density, was corresponded with the stage of open pore-closing and after achieving maximum density over heating resulted in dedensification of specimen, so called, over-firing behavior.

  • PDF

Structure and Properties of Polymer Infiltrated Alumina Thick Film via Inkjet Printing Process

  • Jang, Hun-Woo;Koo, Eun-Hae;Hwang, Hae-Jin;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.207-207
    • /
    • 2008
  • Modern industry has focused on processing that produce low- loss dielectric substrates used complex micron-sized devices using tick film technologies such as tape casting and slip casting. However, these processes have inherent disadvantages fabricating high density interconnect with embedded passives for high speed communication electronic devices. Here, we have successfully fabricated porous alumina dielectric layer infiltrated with polymer solution by using inkjet printing process. Alumina suspensions were formulated as dielectric ink that were optimized to use in inkjet process. The layer was confirmed by field emission scanning electron microscope (FE-SEM) for measuring microstructure and volume fraction. In addition, the reaction kinetics and electrical properties were characterized by FT-IR and the impedance analyzer. The volume fraction of alumina in porous dielectric alumina layer is around 70% much higher than that in the conventional process. Furthermore, after infiltration on the dielectric layer using polymer resins such as cyanate ester. Excellent Q factors of the dielectric is about 200 when confirmed by impedance analyzer without any high temperature process.

  • PDF

A Study on the Extraction of Alumina from Kaolin (카오린으로부터 $Al_2O_3$의 용출에 관한 연구)

  • 백용혁;이종근
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.2
    • /
    • pp.157-161
    • /
    • 1982
  • The possibility of extraction of alumina from domestic Ha-dong kaolin was studied by sulfuric acid treatment. Raw kaolin was calcined at various temperature (500-110$0^{\circ}C$) and calcined kaolin were treated with sulfuric acid. The tendency of extraction yield of alpha alumina have been investigated by relating reaction time, temperature, and acid concentration. After reaction, precipitates were analyzed by DTA, TGA, and identified alpha alumina by X-ray diffractometer with calcined sample at 120$0^{\circ}C$. The results were as follows; 1. The optimum calcination temperature was 800-86$0^{\circ}C$. 2. The most suitable extracting conditions of alpha alumina were 40 wt%-$H_2SO_4$, 2-3 hours acid-treating time and 8$0^{\circ}C$ acid-treating temperature. 3. Precipitates were composed of $(NH_4)_2SO_4$, $Al_2SO_4(OH)_4$ 5-7 $H_2O$ and $Al(OH)_3$.

  • PDF

A Study on the Pore Structure of Hardened Alumina Cement Pste by Water Vapor Sorption ($H_2O$ 증착법에 의한 알루미나 시멘트 경화체의 기공구조 연구)

  • 임용무;장복기
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.4
    • /
    • pp.273-278
    • /
    • 1993
  • Using water vapor (de)sorption isotherm, pore structure analyses were performed for hardened cement pastes by a combination of the "MP-method" for the micropores and the "corrected modelless method" for the wide pores. This work was carried out to investigate the pore structure and to understand the microstructural basis of alumina cement developing much higher strength than Portland cement. Alumina cement shows extremely low microporosity and its wide pores are also composed mainlyof pores with very small radii. And the pore structure analysis results are consistent with the high strength property of alumina cement.y of alumina cement.

  • PDF

The Fabrication and Characteristics of Porous Alumina Ceramics by Pressureless Powder Packing Forming Method : I . Alumina (무가압분말충전성형법에 의한 다공성 세라믹스의 제조 및 특성 : I. 알루미나)

  • 박정현;황명익;김동희;최환욱;김용남
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.6
    • /
    • pp.662-670
    • /
    • 1999
  • Porous alumina was fabricated from pressureless powder packing forming method using powders granulated by spray drying. It was investigated the pore size distribution of fabricated porous alumina. The results of microstructural observation showed that intraganular pore size and intragranular pore size. At 1700$^{\circ}C$ there were no intragranular pores but it showed homogeneous distribution of intergranular pore size. The bending strength and shrinkage increased as porosity decreased. In case of thermal shock resistance sudden decrease of bending strength to $\Delta$T was not shown because intergranular large pore prevented sudden crack propagation.

  • PDF

Preparation of High-Temperature catalytic Support from Gibbsite II. Properties of Amophous Alumina as Precursor of Catalyst Support (깁사이트를 원료로 한 고온촉매용 담체의 제조 II, 비정질 알루미나의 담체 전구체로서의 특성)

  • 김성연;김연식
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.1
    • /
    • pp.92-100
    • /
    • 1996
  • Amorphous alumina(AA) the precursor of ${\gamma}$-alumina for catalyst support was made in the newly designed ball filled heating column. Some properties of AA as precursor were investigated. In observation of microstruc-ture and pore structure of AA and its derivatives scanning electronic microscope(SEM) and transmission electronic microscope(TEM) were used. It was found that the width of one particle in AA was 45~60$\AA$ and the average distance among the particles ranged 9~12 $\AA$ which suggested a micropore structure. When AA was reacted with water the shape of the surface was found to be altered and acicular bioehmite was formed inside AA which contributed inproved formability. Pore distribution was evaluated for the three samples of AA ground and granulated lump and La2O3 coated alumina. Acid sites were quantitatively determined by ammonia TPD method and the effect of impurity of Na on acid sites was discussed. Water adsorption capacity was evaluated in terms of a desiccant.

  • PDF