• Title/Summary/Keyword: Altitude determination

Search Result 58, Processing Time 0.022 seconds

Space Surveillance Radar Observation Analysis: One-Year Tracking and Orbit Determination Results of KITSAT-1, "우리별 1호"

  • Choi, Jin;Jo, Jung Hyun;Choi, Eun-Jung;Yu, Jiwoong;Choi, Byung-Kyu;Kim, Myung-Jin;Yim, Hong-Suh;Roh, Dong-Goo;Kim, Sooyoung;Park, Jang-Hyun;Cho, Sungki
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.105-115
    • /
    • 2020
  • The Korean Institute of Technology Satellite (KITSAT-1) is the first satellite developed by the Satellite Technology Research Center and the University of Surrey. KITSAT-1 is orbiting the Earth's orbit as space debris with a 1,320 km altitude after the planned mission. Due to its relatively small size and altitude, tracking the KITSAT-1 was a difficult task. In this research, we analyzed the tracking results of KITSAT-1 for one year using the Midland Space Radar (MSR) in Texas and the Poker Flat Incoherent Scatter Radar (PFISR) in Alaska operated by LeoLabs, Inc. The tracking results were analyzed on a weekly basis for MSR and PFISR. The observation was conducted by using both stations at an average frequency of 10 times per week. The overall corrected range measurements for MSR and PFISR by LeoLabs were under 50 m and 25 m, respectively. The ionospheric delay, the dominant error source, was confirmed with the International Reference of Ionosphere-16 model and Global Navigation Satellite System data. The weekly basis orbit determination results were compared with two-line element data. The comparison results were used to confirm the orbital consistency of the estimated orbits.

Development, Demonstration and Validation of the Deep Space Orbit Determination Software Using Lunar Prospector Tracking Data

  • Lee, Eunji;Kim, Youngkwang;Kim, Minsik;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.213-223
    • /
    • 2017
  • The deep space orbit determination software (DSODS) is a part of a flight dynamic subsystem (FDS) for the Korean Pathfinder Lunar Orbiter (KPLO), a lunar exploration mission expected to launch after 2018. The DSODS consists of several sub modules, of which the orbit determination (OD) module employs a weighted least squares algorithm for estimating the parameters related to the motion and the tracking system of the spacecraft, and subroutines for performance improvement and detailed analysis of the orbit solution. In this research, DSODS is demonstrated and validated at lunar orbit at an altitude of 100 km using actual Lunar Prospector tracking data. A set of a priori states are generated, and the robustness of DSODS to the a priori error is confirmed by the NASA planetary data system (PDS) orbit solutions. Furthermore, the accuracy of the orbit solutions is determined by solution comparison and overlap analysis as about tens of meters. Through these analyses, the ability of the DSODS to provide proper orbit solutions for the KPLO are proved.

Observational Arc-Length Effect on Orbit Determination for KPLO Using a Sequential Estimation Technique

  • Kim, Young-Rok;Song, Young-Joo;Bae, Jonghee;Choi, Seok-Weon
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.295-308
    • /
    • 2018
  • In this study, orbit determination (OD) simulation for the Korea Pathfinder Lunar Orbiter (KPLO) was accomplished for investigation of the observational arc-length effect using a sequential estimation algorithm. A lunar polar orbit located at 100 km altitude and $90^{\circ}$ inclination was mainly considered for the KPLO mission operation phase. For measurement simulation and OD for KPLO, the Analytical Graphics Inc. Systems Tool Kit 11 and Orbit Determination Tool Kit 6 software were utilized. Three deep-space ground stations, including two deep space network (DSN) antennas and the Korea Deep Space Antenna, were configured for the OD simulation. To investigate the arc-length effect on OD, 60-hr, 48-hr, 24-hr, and 12-hr tracking data were prepared. Position uncertainty by error covariance and orbit overlap precision were used for OD performance evaluation. Additionally, orbit prediction (OP) accuracy was also assessed by the position difference between the estimated and true orbits. Finally, we concluded that the 48-hr-based OD strategy is suitable for effective flight dynamics operation of KPLO. This work suggests a useful guideline for the OD strategy of KPLO mission planning and operation during the nominal lunar orbits phase.

Ground Altitude Computation Algorithm using Laser Altimeter and GPS for UAV Automatic Take-off and Landing (레이저 고도계 및 GPS를 이용한 무인기의 자동이착륙용 지면고도계산 알고리듬 설계)

  • Cho, Sangook;Choi, Keeyoung;Kim, Sung-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.54-60
    • /
    • 2013
  • This paper presents a ground altitude determination algorithm using a laser altimeter and GPS for automatic take-off and landing of UAV. The characteristics of the laser altimeter was analyzed in ground tests and a low-pass filter was designed to reduce the effect of signal interruption due to reflectivity problem. The paper shows that a single sensor cannot measure ground altitude appropriately in terms of reliability and accuracy. To complement shortcomings of the laser altimeter, the linear Kalman filter was designed using DGPS vertical speed. Designed filter was validated and tuned through the steps of simulation, ground test and flight test. It was confirmed that the accuracy for automatic landing is achievable.

Application of Kalman Filtering Technique to Initial Axes Erection of SDINS (SDINS의 좌표축 초기 직립에 관한 칼만 필터링 기법의 응용)

  • Choe, Geun-Guk;Lee, Man-Hyeong;Kim, Jung-Wan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.4 no.4
    • /
    • pp.56-71
    • /
    • 1987
  • Determination of navigation variables (latitude, longitude, and altitude) near the earth's surface is termed 'Terrestrial Navigation'. The quantities that are measured inertially are the total acceleration (or the integral fo this acceleration over a fixed time interval) and the total angular rate (or the integral of this angular rate over the same time interval). These measurements when suitably compensated can be manipulated to yield the navigation variables. Hence, it is essential that the initial values of position, orientation and velocity are accurately set up during the initial alignment process. Initial alignment of gimballed inertial navigation system ( GINS) is accomplished by gyrocompassing techniques. These cannot be used, in the case of strapdown inertial navigation system(SDINS), where the inertial instruments are directly strapped down to a vehicle frame. The basic objective of this paper is the development of digital method for the determination of the initial axes erection of a SDINS from vibration and sway currupted data on the launch pad.

  • PDF

Inorganic Nutrient Uptake Pattern of Vegetable Crops in Highland (고랭지 주요 채소작물의 무기성분 흡수 특성)

  • Lee, Jeong-Tae;Lee, Gye-Jun;Ryu, Jong-Soo;Zhang, Yong-Seon;Hwang, Seon-Woong;Park, Chol-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.616-623
    • /
    • 2010
  • Plant samples from 49 sites for Chinese cabbage, 28 sites for radish, 16 sites for cabbage, 8 sites for head lettuce, 20 sites for onion from farmers' and experimental fields in highland of Korea were collected and analyzed to find out the uptake patterns of nitrogen (N), phosphorus (P) and potassium (K) by altitude. Dry weight and uptake of N, P and K were increased at higher altitude in most vegetable crops. Nutrition uptake by Chinese cabbage was 163 ~ 283 kg $ha^{-1}$ for N, 42 ~ 69 kg $ha^{-1}$ for $P_2O_5$ and 146 ~ 270 kg $ha^{-1}$ for $K_2O$ according to altitude. Nutrient uptake by radish according to altitude was 153~159 kg $ha^{-1}$ for N, 38 ~ 46 kg $ha^{-1}$ for $P_2O_5$, and 151 ~ 185 kg $ha^{-1}$ for $K_2O$. In case of cabbage, the plant uptakes of N, P, and K were increased at altitudes of 600 ~ 1,000 m. Nutrient uptake of cabbage was 280 ~ 348 kg $ha^{-1}$ for N, 34 ~ 87 kg $ha^{-1}$ for $P_2O_5$, and 209 ~ 290 kg $ha^{-1}$ for $K_2O$ according to altitude. Uptakes of N-$P_2O_5-K_2O$ by head lettuce at an altitude of 800 ~ 850 m were 93-26-126 kg $ha^{-1}$, respectively. Uptakes of N-$P_2O_5-K_2O$ by onions at an altitude of 600 ~ 800 m were 313-140-234 kg $ha^{-1}$, respectively, but there was no tendency in nutrition uptake patterns by altitude. Small cultivation areas used for leaf vegetable crops do not have fertilizer recommendation standards in alpine regions. It might be preferable to use a correction factor equivalent to the index of available nutrient uptake for the determination of N, P and K fertilizer application rates.

A Conceptual Study of Positioning System for the Geostationary Satellite Autonomous Operation (정지궤도 위성의 자동운용을 위한 위치결정 시스템의 개념연구)

  • Lee, Sang-Cherl;Ju, Gwang-Hyeok;Kim, Bang-Yeop;Park, Bong-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.41-47
    • /
    • 2005
  • Even more than 240 commercial geostationary communication satellites currently on orbit at the higher location than the GPS orbit altitude perform their own missions only by the support of the ground segment because of weak visibility from GPS. In addition, the orbit determination accuracy is very low without using two or more dedicated ground tracking antennas in intercontinental ground segment, since the satellite hardly moves with respect to the ground station. In this paper, we propose the GSPS(Geostationary Satellite Positioning System) in circular orbits of two sidereal days period higher than the geosynchronous orbit for orbit determination and autonomous satellite operation. The GSPS is conceived as a ranging system in that unknown positions of a geostationary satellite can be acquired from the known positions of the GSPS satellites. Each GSPS satellite transmits navigation data, clock data, correction data, and geostationary satellite command to control a geostationary satellite.

Determination of Ionospheric Delay Scale Factor for Low Earth Orbit using the International Reference Ionosphere Model (IRI 모델을 이용한 저궤도 전리층 지연값 배율 결정)

  • Kim, Jeongrae;Kim, Mingyu
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.331-339
    • /
    • 2014
  • Determination of an ionospheric delay scale factor, which converts ground-based ionospheric delay into low Earth orbit ionospheric delay, using the international reference ionosphere model is proposed. Ionospheric delay from international GNSS service model combined with IRI-derived scale factor is evaluated with NASA GRACE satellite data. At approximately 480km altitude, mean and standard deviation of the scale factor are 0.25 and 0.01 in 2004. The scale factor reaches high in night time and Spring and Fall seasons. Ionospheric delay error by the proposed method has a mean of 3.50 TECU in 2004.

Precision Orbit Determination of the SAC-C Satellite Using the GPS Dual Frequency Measurement

  • Yoon, Jae-Cheol;Im, Jeong-Heum;Moon, Hong-Youl;Lee, Sang-Ryool;Lee, Byoung-Sun
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.48-48
    • /
    • 2003
  • A precision orbit determination (POD) system of low Earth orbiter using the GPS dual frequency measurements has been developed. It is an option of KOMPSAT-2 POD process system. In this research, the orbit determination using the real dual frequency carrier phase measurements of the SAC-C satellite was conducted to verify KOMPSAT-2 POD system reliability. The SAC-C satellite is an international cooperative mission between NASA, the Argentine Commission on Space Activities (CONAE), Centre National d'Etudes Spatiales (CNES or the French Space Agency), Instituto Nacional De Pesquisas Espaciais (Brazilian Space Agency), Danish Space Research Institute, and Agenzia Spaziale Italiana (Italian Space Agency). The SAC-C was launched at November 21, 2000. The altitude of SAC-C is 702 km and it carries a TurboRogue III GPS and four high gain antennas developed by the JPL. The receiver is able to generate the dual frequency code and carrier phase data. Double-differenced carrier phase measurements were formed using 25 IGS stations. The data were sampled at 30 seconds interval. Fully dynamic approach was adopted for POD. The POD results were compared with those of JPL using GOA n software. The comparison verifies that deci-meter level 3D position accuracy of low Earth orbiting satellite could be achieved. The POD system has been developed successfully.

  • PDF

PREPROCESSING OF THE GPS RAW DATA FOR THE PRECISION ORBIT DETERMINATION BY DGPS TECHNIQUE (DGPS 방식에 의한 위성의 정밀궤도 결정을 위한 GPS 원시 자료 전처리)

  • 문보연;이정숙;이병선;김재훈;박은서;윤재철;노경민;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.2
    • /
    • pp.163-172
    • /
    • 2002
  • This article investigates the problem of data preprocessing for the precision orbit determination (POD) of low earth orbit satellite using GPS .aw data. Several data preprocessing algorithms have been developed to edit the GPS data automatically such that outlier deletion, cycle slip identification and correction, and time tag error correction. The GPS data are precisely edited for the accuracy of POD. Some methods of data preprocessing are restricted to the rate of the collections of the pseudorange and carrier phase measurements. This study considers the preprocessing efficiency varied with the rate, the quality of receiver and the altitude of the satellite's orbit. We also propose the proper methods in accordance with the rate for single frequency and dual frequency receivers.