• Title/Summary/Keyword: Altitude Variation

Search Result 182, Processing Time 0.017 seconds

The Study on the Debris Slope Landform in the Southern Taebaek Mountains (태백산맥 남부산지의 암설사면지형)

  • Jeon, Young-Gweon
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.2
    • /
    • pp.77-98
    • /
    • 1993
  • The intent of this study is to analyze the characteristics of distribution, patter, and deposits of the exposed debris slope landform by aerial photography interpretation, measure-ment on the topographical maps and field surveys in the southern part Taebaek mountains. It also aims to research the arrangement types of mountain slope and the landform development of debris slopes in this area. In conclusion, main observations can be summed up as follows. 1. The distribution characteristics 1)From the viewpoint of bedrocks, the distribution density of talus is high in case of the bedrock with high density of joints, sheeting structures and hard rocks, but that of the block stream is high in case of intrusive rocks with the talus line. 2)From the viewpoint of bedrocks, the distribution density of talus is high in case of the bedrock with high density of joints, sheeting structures and hard rocks, but that of the block stream is high in case of inrtusive rocks with the talus line. 2) From the viewpoint of distribution altitude, talus is mainly distributed in the 301~500 meters part above the sea level, while the block stream is distributed in the 101~300 meters part. 3) From the viewpoint of slope oriention, the distribution density of talus on the slope facing the south(S, SE, SW) is a little higher than that of talus on the slope facing the north(N, NE, NW). 2. The Pattern Characteristics 1) The tongue-shaped type among the four types is the most in number. 2) The average length of talus slope is 99 meters, especially that of talus composed of hornfels or granodiorite is longer. Foth the former is easy to make free face; the latter is easdy to produce round stones. The average length of block stream slope is 145 meters, the longest of all is one km(granodiorite). 3) The gradient of talus slope is 20~45${^\circ}$, most of them 26-30${^\croc}$; but talus composed of intrusive rocks is gentle. 4) The slope pattern of talus shows concave slope, which means readjustment of constituent debris. Some of the block stream slope patterns show concave slope at the upper slope and the lower slope, but convex slope at the middle slope; others have uneven slope. 3. The deposit characteristics 1) The average length of constituent debris is 48~172 centimeters in diameter, the sorting of debris is not bad without matrix. That of block stream is longer than that of talus; this difference of debris average diameter is funda-mentally caused by joint space of bedrocks. 2) The shape of constituent debris in talus is mainly angular, but that of the debris composed of intrusive rocks is sub-angular. The shape of constituent debris in block stream is mainly sub-roundl. 3) IN case dof talus, debris diameter is generally increasing with downward slope, but some of them are disordered and the debris diameter of the sides are larger than that of the middle part on a landform surface. In block stream, debris diameter variation is perpendicularly disordered, and the debris diameter of the middle part is generally larger than that of the sides on a landform surface. 4)The long axis orientation of debris is a not bad at the lower part of the slope in talus (only 2 of 6 talus). In block stream(2 of 3), one is good in sorting; another is not bad. The researcher thinks that the latter was caused by the collapse of constituent debris. 5) Most debris were weathered and some are secondly weathered in situ, but talus composed of fresh debris is developing. 4. The landform development of debris slopes and the arrangement types of the mountain slope 1) The formation and development period of talus is divided into two periods. The first period is formation period of talus9the last glacial period), the second period is adjustment period(postglacial age). And that of block stream is divided into three periods: the first period is production period of blocks(tertiary, interglacial period), the second formation period of block stream(the last glacial period), and the third adjustment period of block stream(postglacialage). 2) The arrangement types of mountain slope are divided into six types in this research area, which are as follows. Type I; high level convex slope-free face-talus-block stream-alluvial surface Type II: high level convex slope-free face-talus-alluvial surface Type III: free face-talus-block stream-all-uvial surface Type IV: free face-talus-alluval surface Type V: talus-alluval surface Type VI: block stream-alluvial surface Particularly, type IV id\s basic type of all; others are modified ones.

  • PDF

The Value and Growing Characteristics of the Dicentra Spectabilis Community in Daea-ri, Wanju-gun, Jeollabuk-do as a Nature Reserve (전북 완주군 대아리 금낭화 Dicentra spectabilis 군락지의 천연보호구역적 가치와 생육특성)

  • Lee, Suk Woo;Rho, Jae Hyun;Oh, Hyun Kyung
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.1
    • /
    • pp.72-105
    • /
    • 2011
  • This study explores the value of the Dicentra spectabilis community as a nature reserve in provincial forests at San 1-2, Daea-ri, Dongsang-myeon, Wanju-gun, Jellabuk-do, also known as Gamakgol, while defining the appropriateness of its living environment and eventually providing basic information to protect this area. For these reasons, we investigated 'morphological and biological features of Dicentra spectabilis' and the 'present situation and problems of designing a herbaceous nature reserve in Korea.' Furthermore, we researched and analyzed the solar, soil and vegetation condition here through a field study in order to comprehend its nature reserve value. The result is as follows. According to the analytic result for information on the domestic wild Dicentra spectabilis community, it is evenly spread throughout mountainous areas, and there is one particularly outstanding in size in Wanju Gamakgol. Upon the findings from literature and the field study about its dispersion, Gamakgol has been discovered as an ideal district for Dicentra spectabilis since it meets all the conditions this plant requires to grow vigorously, such as a quasi-high altitude and rich precipitation during its period of active growth duration in May. Dicentra spectabilis grows in rocky soil ranging from 300~375m above sea level, 344.5m on average, towards the north, northwest and dominantly in the northeast. The mean inclination degree is $19.5^{\circ}$. Also, upon findings from analyzing solar conditions, the average light intensity during its growth duration, from Apr. to Aug., is 30,810lux on average and it tends to increase, as it gets closer to the end. This plant requires around 14,000~18,000lux while growing, but once bloomed, fruits develop regardless of the degree of brightness. The soil pH has shown a slight difference between the topsoil, at 5.2~6.1, and subsoil, at 5.2~6.2. Its mean pH is 5.54 for topsoil and 5.58 for subsoil. These results are very typical for Dicentra spectabilis to grow in, and other comparative areas also present similar conditions. Given the facts, the character of the soil in Gamakgol has been evaluated to have high stability. Analysis of its vegetation environment shows a wide variation of taxa numbering from 13 to 52 depending on area. The total number of taxa is 126 and they are a homogenous group while showing a variety of species as well. The Dicentra spectabilis community in the Daea-ri Arboretum is an herbaceous community consisting of dominantly Dicentra spectabilis, Cardamine leucantha, Boehmeria tricuspi and Impatiens textori while having many differential species such as Impatiens textori, Pueraria thunbergiana, Rubus crataegifolius vs Staphylea bumalda, Securinega suffruticosa, and Actinidia polygama. It suggests that it is a typical subcolony divided by topographic features and soil humidity. Considering the above results on a comprehensive level, this area is an excellent habitat for wild Dicentra spectabilis providing beautiful viewing enjoyment. Additionally, it is the largest wild colony of Dicentra spectabilis in Korea whose climate, topography, soil conditions and vegetation environment can secure sustainability as a wild habitat of Dicentra spectabilis. Therefore, We have determined that the Gamakgol community should be re-examined as natural asset owing to its established habitat conditions and sustainability.