• Title/Summary/Keyword: Altimeter

Search Result 154, Processing Time 0.023 seconds

Enhanced Recovery of Gravity Fields from Dense Altimeter Data

  • Kim, Jeong-Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.14 no.2
    • /
    • pp.127-139
    • /
    • 1996
  • This paper presents a procedure to recover sea surface heights (SSH) and free-air (FA) gravity anomalies from dense satellite altimeter SSH data with enhanced accuracies over the full spectrum of the gravity field. A wavenumber correlation filtering (WCF) of co-linear SSH tracks is developed for the coherent signals of sub-surface geological masses. Orbital cross-over adjustments with bias parameters are applied to the filtered SSH data, which are then separated into two groups of ascending and descending tracks and gridded with tensioned splines. A directional sensitive filter (DSF) is developed to reduce residual errors in the orbital adjustments that appear as track patterned SSH. Finally, FA gravity anomalies can be obtained by the application of a gradient filter on a high resolution estimate of geoid undulations after subtracting dynamic sea surface topography (DSST) from the SSH. These procedures are applied to the Geosat Geodetic Mission (GM) data of the southern oceans in a test area of ca. $900km\;\times{1,200}\;km$ to resolve geoid undulations and FA gravity anomalies to wavelengths of-10 km and larger. Comparisons with gravity data from ship surveys, predictions by least squares collocation (LSC), and 2 versions of NOAA's predictions using vertical deflections illustrate the performance of this procedure for recovering all elements of the gravity spectrum. Statistics on differences between precise ship data and predicted FA gravity anomalies show a mean of 0.1 mgal, an RMS of 3.5 mgal, maximum differences of 10. 2 mgal and -18.6 mgal, and a correlation coefficient of 0.993 over four straight ship tracks of ca. 1,600 km where gravity changes over 150 mgals.

  • PDF

Design and Implementation of FMCW Radar Signal Processor for Drone Altitude Measurement (드론 고도 측정용 FMCW 레이다 신호처리 프로세서 설계 및 구현)

  • Lim, Euibeen;Jin, Sora;Jung, Yongchul;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.554-560
    • /
    • 2017
  • Accurate altimetry is required for the reliable flight control of drones or unmanned air vehicles (UAVs), and the radar altimeter is commonly used owing to its accuracy for the ground level. Due to the limitation for size, weight and power consumption, the frequency modulated continuous wave (FMCW) radar is appropriate for drone because it has lower complexity than that of pulse Doppler (PD) radar. Especially, fast-ramp FMCW radar, which transmits linear FM signal during very short period, is generally utilized, because it is robust for the ego-motion of drone. Therefore, we present the design and implementation results of the radar signal processor (RSP) for fast-ramp FMCW radar system. The proposed RSP was designed with Verilog-HDL and implemented with Altera Cyclone-IV FPGA device. Implementation results show that the proposed RSP includes 27,523 logic elements, 15,798 registers and memory of 138Kbits and can measure the altimeter at the rate of 100Hz with the operating frequency of 50MHz.

Sea level observations in the Korean seas by remote sensing (원격탐사를 이용한 한반도 주변해역의 해면변화 및 표층순환)

  • 윤홍주;김승철;변혜경;황화정
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.339-342
    • /
    • 2003
  • Sea level variations and sea surface circulations inthe Korean seas were observed by Topex/Poseidon altimeter data from 1993 through 1997. In sea level variations, the West and South Sea showed relatively high variations with comparison to the East Sea. Then, the northern and southern area in the West Sea showed the range of 20-30cm and 18-24cm, and the northern west of Jeju island and the southern west of Tsushima island in the South Sea showed the range of 15-20cm and 10-15cm, respectively. High variations in the West Sea was results to the inflow in sea surface of Yellow Sea Warm Current (YSWC) and bottom topography. Sea level variations in the South Sea was due to two branch currents (Jeju Warm Current and East Korea Warm Current) originated from Kuroshio Current (KC). In sea surface circulations, there existed remarkably three eddies circulations in the East Sea that are mainly connected with North Korea Cold Current (NKCC), East Korea Warm Current (EKWC) and Tushima Warm Current (TWC). Their eddies are caused basically to the influence of currents in sea surface circulations; Cyclone (0.03 cm/sec) in the Wonsan bay on shore with NKCC, and anticyclone (0.06 cm/sec) in the southwestern area of Ulleung island with EKWC, and cyclone (0.01 cm/set) in the northeastern area of Tushima island with TWC, respectively.

  • PDF

Computation of Tides in the Northeast Asian Sea by Blending the Topex/Poseidon Altimeter Data (Topex/Poseidon 고도계 자료를 이용한 북동 아시아 해역의 조석 산정)

  • Kim, Chang-Shik;Matsumoto, Koji;Ooe, Masatsugu;Lee, Jong-Chan
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.1
    • /
    • pp.1-12
    • /
    • 2001
  • Tidal computations of $M_2,\;S_2,\; K_1$ and $O_1$ constituents in the northeast Asian sea are presented by blending the Topex/Poseidon (T/P) altimeter data into a hydrodynamic model with $5'{\times}5'$ resolution. A series of sensitivity experiments on a weighting factor, which is the control parameter in the blending method, are carried out using $M_2$ constituent. The weighting factor is set to be in inverse proportion to the square root of water depth to reduce noises which could occur in data-assimilative model by blending T/P data. Model results obtained by blending the T/P-derived $M_2,\;S_2,\; K_1$ and $O_1$ constituents simultaneously are compared with all T/P-track tidal data; Average values of amplitude and phase errors are close to zero. Standard deviations of amplitude and phase errors are approximately 2 cm and less than 10 degrees respectively. The data-assimilative model results show a quite good agreement with T/P-derived tidal data, particularly in shallow water region (h<250m). In deep water regions, T/P-derived tidal data show unreasonable spatial variations in amplitude and phase. The data-assimilative model results differ from T/P-derived data, but are improved to show reasonable spatial variations in amplitude and phase. In addition, the T/P-blended model results are in good agreement with coastal tide gauge data which are not blended into the model.

  • PDF

Analysis of Optimum Antenna Placement Considering Interference Between Airborne Antennas Mounted on UAV (무인항공기 탑재 안테나 간 간섭을 고려한 안테나 최적 위치 분석)

  • Choi, Jaewon;Kim, Jihoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.32-40
    • /
    • 2015
  • In this paper, the optimum antenna placement is analyzed by considering the interference between airborne antennas mounted on the unmanned aerial vehicle(UAV). The analysis is implemented by selecting the antennas that the distance and operational frequency band between airborne antennas is close to each other among the omni-directional antennas. The analyzed antennas are the control datalink, TCAS(Traffic Collision & Avoidance System), IFF(Identification Friend or Foe), GPS(Global Positioning System), and RALT(Radar ALTimeter) antennas. There are three steps for the optimum antenna placement analysis. The first step is selecting the antenna position having the optimum properties by monitoring the variation of radiation pattern and return loss by the fuselage of UAV after selecting the initial antenna position considering the antenna use, type, and radiation pattern. The second one is analyzing the interference strength between airborne antennas considering the coupling between airborne antennas, spurious of transmitting antenna, and minimum receiving level of receiving antenna. In case of generating the interference, the antenna position without interference is selected by analyzing the minimum separation distance without interference. The last one is confirming the measure to reject the frequency interference by the frequency separation analysis between airborne antennas in case that the intereference is not rejected by the additional distance separation between airborne antennas. This analysis procedure can be efficiently used to select the optimum antenna placement without interference by predicting the interference between airborne antennas in the development stage.

Comparison of Sea Level Data from Topex/Poseidon in-situ Tide-Gauges in the East Sea (한반도 동해상에서의 Topex/Poseidon 고도자료와 현장 조위계 관측 자료의 비교연구)

  • Youn, Yong-Hoon;Kim, Na-Young;Kim, Ki-Hyun;Hwang, Jong-Sun;Kim, Jeong-Woo
    • Journal of the Korean earth science society
    • /
    • v.23 no.4
    • /
    • pp.349-356
    • /
    • 2002
  • In an effort to properly assess the validity of spaceborne radar altimeter measurements, we made a direct comparison of two different sea surface heights (SSH) acquired by both Topex/Poseidon (T/P) satellite and in-situ tide-gauges (T/G). This comparative analysis was conducted using the data sets collected from three locations along the eastern coast of Korea which include: Ulleungdo, Pohang, and Sokcho. In the course of the analysis of satellite altimeter, information of SSH was extracted from the T/P MGDR data sets through the application of both atmospheric and geophysical corrections. To compare the T/P data sets in parallel basis, the T/G data sets were averaged using the measured values within the peripheral radius of 55km. When compared among different locations, the compatibility between the two methods was much more significant in an offshore location (Ulleungdo) than the two onshore locations (Pohang, Sokcho). If the low-pass filtered results were compared among the sites, the offshore site exhibited the best correlations between the two methods (correlation coefficient of 0.91) than those of the onshore sites. These large differences in the strength of correlations among different locations are due to the deformation of M2, S2, and K1 tidal components used in the tidal model. In case of the offshore location, the compatibility of the two different methods were improved systematically by the low-pass filtering with an increase of the filtering duration such as up to 200 days.

동해지역의 선상중력자료 처리 및 해면고도계자료와의 비교

  • 최광선;원지훈
    • Proceedings of the International Union of Geodesy And Geophysics Korea Journal of Geophysical Research Conference
    • /
    • 2003.05a
    • /
    • pp.19-19
    • /
    • 2003
  • 본 연구에서는 국립해양조사원의 '해양2000호'를 통해 1996년과 1997년에 측정한 동해 지역의 중력자료에 대한 자료 처리를 하였다. 효과적인 자료처리를 위해 선상중력자료 처리에 필요한 각종 보정 절차와 문제점 등을 알아보았으며, 선상자료와 해면고도계자료의 비교 및 이를 통한 선상자료의 검증을 실시하였다. 선상중력자료는 측정과 처리 과정에 있어 여러 사항을 고려하여야 한다. 즉, 육상중력기점을 이용한 절대중력으로의 환산 문제, 선박 항해 위치의 부정확성에 기인하는 문제 및 중력계의 기계적 특성과 중력 측정이 이루어질 때의 해상 조건에 의한 영향 등으로 선상중력자료에 나타나는 여러 오차를 최소화하여야 한다. 선상중력자료로부터 각종 지구중력장 연구에 필요한 중력이상을 계산하기 위해 선상중력 측정시 기인되는 각종 요인의 오차를 고려한 효과적인 보정이 이루어져야 한다. 즉, 선상중력계의 기계변이 보정, 탐사선에 대한 위치 자료의 획득 및 필터링, 그리고 탐사선의 이동으로 인한 Eotvos 효과의 정확한 계산 및 보정이 필요하고, 선상중력계의 기계적 특성에 의해 나타나는 시간지연에 대한 보정도 필요하다. 또한 이러한 보정을 통해 계산한 중력 이상에서 각 교점의 오차를 보정하는 교정오차 보정도 실시하여야 한다. 특히, 탐사선의 이동으로 인한 지구자전 각속도의 상대적인 증감의 효과로 나타나는 Eotvos 효과의 영향은 선상중력자료의 정확도에 가장 큰 영향을 미친다. 이의 정확한 계산 및 보정을 위해서는 정확한 위치정보가 필요하며 본 연구에서는 이를 위해 GPS 항해정보에 대한 Kalman 필터를 실시하였고, Eotvos 효과에 대해 Savitzky-Golay 필터를 적용하여 최적의 Eotvos 보정을 시도하였다. 본 연구에서 계산된 동해지역의 중력이상에 대한 대력적인 범위는 경도 129° - 133°이고 위도 35° - 38.3° 부근이다. 이 지역에 대한 고도이상은 최소 -42.46 mGal에서 최고 161.13 mGal사이에 분포하며, 고도이상의 평균은 14.450 mGal이다. 또한 Bouguer 이상은 최소 -l5.09 mGal에서 최고 218.61 mGal이고 이의 평균은 82.681 mGal이다. 그리고 동해지역의 선상중력 측정지역에서 선상자료에 의한 중력이상과 Altimeter 자료에 의한 고도이상의 전반적인 윤곽은 비슷하면서도 일부 작은 이상의 차이가 나타났으며, 지형자료와 비교하여 보면 Altimeter에 의한 결과보다 선상측정에 의한 결과가 더욱 잘 일치하고 있어 본 연구에서 계산한 선상자료의 타당성을 알 수 있다. 고도이상의 차이는 최소 -25.94 mGal에서 최대 85.33 mGal의 차이를 보이며 차이의 평균은 3.517 mGal, RMS는 6.774 meal이다. 이는 비교적 큰 차이로 선상측정자료의 중요성과 필요성을 단적으로 나타내고 있다.

  • PDF

Mutual Adjustment of Oceanographic Measurements from leodo Station and Satellite Data (원격탐사자료와 이어도기지 해양관측자료를 이용한 상호 보정)

  • Kim Chang-Oh;Shim Jae-Seol;Hwang Jong-Sun;Lee Jae-Hak;Kim Soodung;Kim Jeong Woo
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.2
    • /
    • pp.113-120
    • /
    • 2005
  • Oceanographic measurements from Ieodo Ocean Research Station and its vicinity were compared for assessment and mutually adjusted with satellite data. From the Topex/Poseidon and ERS-1/2 radar altimeter and scatterometer data, sea surface height, wind speed and direction were extracted and analyzed. Shipborne wind direction data acquired in June 1995 show good coherence with the satellite data, while sea surface height and wind speed show differences, possibly resulting from the distance between the measurement points. This can be improved by analyzing more satellite data or using other available shipborne data. The recent 3 months of Ieodo Station data between December 2004 and February 2005 were also analyzed and compared with the satellite data. The Ieodo Station data were found to have considerable gaps during the period as well as seriously biased particular when the data were averaged with some abnormal data. The Ieodo Station and satellite data were then mutually adjusted on the basis of their statistics. Ieodo Station oceanographic measurements are very efficient for ground-frothing of satellite data because they are stationary and the station is located far from the coast. On the other hand, the satellite measurements are the only data to fill up gaps and adjust biases of the Ieodo Station data.

On characteristics of environmental correction factors in the South Indian Ocean by Topex/Poseidon satellite altimetric data (Topex/Poseidon 위성의 Altimeter자료를 이용한 남인도양의 환경보정인자 특성에 관한 연구)

  • 윤홍주;김영섭;이재철
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.2
    • /
    • pp.117-128
    • /
    • 1998
  • Topex/Poseidon satellite, launched in Auguest 1992, has provided more 5 years of very good quality data. Efficient improvements, either about instrumental accuracy or about sea level data correction, have been made so that Topex/Poseidon has become presently a wonderful tool for many researchers. The first mission data of 73 cycles, September 1992 - August 1994, was used to our study in order to know characteristics of environmental correction factors in the Amsterdam-Crozet-Kerguelen region of the South Indian Ocean. According to standard procedures as defined under user handbook for sea surface height data processes, then we have chosen cycles 43 as the cycle of reference because this cycle has provided the completed data for measurement points and has presented the exacted position of ground track compared to another cycles. It was computed variations of various factors for correction in ascending ground track 103(Amsterdam-Kerguelen continental plateau) and descending ground track170 (Crozet basin). Here the variations of ionosphere, dry troposphere, humid troposphere, electromagnetic bias, elastic tide and loading tide were generally very smaller as a few of cm, but the variations of oceanic tide(30-35cm) and inverted barometer(15-30cm) were higher than another factors. For the correction of ocean tide, our model(CEFMO: Code d' Elements Finis pour la Maree Oceanique) - This is hydrodynamic model that is very well applicated in all oceanic situations - was used because this model has especially good solution in the coastal and island area as the open sea area. Conclusionally, it should be understood that the variation of ocean free surface is mainly under the influence of tides(>80-90%) in the Amsterdam - Crozet- Kerguelen region of the South Indian Ocean.

Multi-scale Correlation Analysis between Sea Level Anomaly and Climate Index through Wavelet Approach (웨이블릿 접근을 통한 해수면 높이와 기후 지수간의 다중 스케일 상관 관계 분석)

  • Hwang, Do-Hyun;Jung, Hahn Chul
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.587-596
    • /
    • 2022
  • Sea levels are rising as a result of climate change, and low-lying areas along the coast are at risk of flooding. Therefore, we tried to investigate the relationship between sea level change and climate indices using satellite altimeter data (Topex/Poseidon, Jason-1/2/3) and southern oscillation index (SOI) and the Pacific decadal oscillation (PDO) data. If time domain data were converted to frequency domain, the original data can be analyzed in terms of the periodic components. Fourier transform and Wavelet transform are representative periodic analysis methods. Fourier transform can provide only the periodic signals, whereas wavelet transform can obtain both the periodic signals and their corresponding time location. The cross-wavelet transformation and the wavelet coherence are ideal for analyzing the common periods, correlation and phase difference for two time domain datasets. Our cross-wavelet transform analysis shows that two climate indices (SOI, PDO) and sea level height was a significant in 1-year period. PDO and sea level height were anti-phase. Also, our wavelet coherence analysis reveals when sea level height and climate indices were correlated in short (less than one year) and long periods, which did not appear in the cross wavelet transform. The two wavelet analyses provide the frequency domains of two different time domain datasets but also characterize the periodic components and relative phase difference. Therefore, our research results demonstrates that the wavelet analyses are useful to analyze the periodic component of climatic data and monitor the various oceanic phenomena that are difficult to find in time series analysis.