• Title/Summary/Keyword: Alternative water resources

Search Result 349, Processing Time 0.025 seconds

Spatial prioritization of permeable pavement considering multiple general circulation models: Mokgamcheon watershed (다수의 전지구모형을 고려한 투수성 포장시설의 우선지역 선정: 목감천 유역)

  • Song, Younghoon;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.1011-1023
    • /
    • 2019
  • Rapid urbanization increases the risk of hydrologic disasters due to the increase of impervious areas in urban areas. Precipitation characteristics can be transformed due to the rise of global temperatures. Thus urban areas with the increased impervious areas are more exposed to hydrological disasters than ever before. Therefore, low impact development practices have been widely installed to rehabilitate the distorted hydrologic cycle in the urban area. This study used the Stormwater Management Model to analyze the water quantity and quality of the Mokgamcheon which had been severely urbanized, considering future climate scenarios presented by various general circulation models (GCMs). In addition the effectiveness of permeable pavement by 27 sub-watersheds was simulated in terms of water quantity and quality considering various GCMs and then the priorities of sub-watersheds were derived using an alternative valuation index which uses the pressure-state-response framework.

Exploring sustainable resources utilization: Interlink between food waste generation and water resources conservation

  • Adelodun, Bashir;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.408-408
    • /
    • 2019
  • The persistence of drought periods and water scarcity is a growing public concern, as climate change projections indicate a more critical scenario in the future. The sustainability of water resources for the increasing population, and to ensuring crop production will unarguably be a daunting task for the water resources managers, with a projected 9.8 billion people by 2050 as well as the need to increase food production by 70 to 100%. Consequently, there is a need for significant irrigation water use for more crop production in the face of stiff competition among water users. However, the available natural resources are already over-constrained, and the allocation of more resources for food production is not feasible. Currently, about two-thirds of global water withdrawer is used by the agricultural sector while 48% of water resources in Korea is used for agricultural production. Despite the apparent ecological deficit and unfavorable conditions of resources utilization, a staggering amount of food waste occurs in the country. Moreover, wastage of food translates to waste of all the resources involved in the food production including water resources. Food waste can also be considered a serious potential for economic and environmental problems. Hence, exploring an alternative approach to efficient resources utilization in a more sustainable way can ensure considerable resources conservation. We hypothesized that reducing food waste will decline the demand for food production and consequently reduce the pressure on water resources. We investigated the food wastage across the food supply chain using the top-down datasets based on the FAO mass balance model. Furthermore, the water footprint of the estimated food wastage was assessed using the representative of selected food crops. The study revealed that the average annual food wastage across the food supply chain is 9.05 million tonnes, signifying 0.51 kg/capita/day and 48% of domestic food production. Similarly, an average of $6.29Gm^3$ per annum of water resources was lost to food wastage, which translates to 40% of the total allotted water resources for agriculture in the country. These considerable resources could have been conserved or efficiently used for other purposes. This study demonstrated that zero food waste generation would significantly reduce the impact on freshwater resources and ensure its conservation. There is a need for further investigation on the food waste study using the bottom-up approach, specifically at the consumer food waste, since the top-down approach is based on estimations and many assumptions were made.

  • PDF

Estimation of Water Quality Improvement Benefit Using Replacement Cost Approach (대체비용법을 이용한 하천 수질개선편익 산정)

  • Yeo, Kyu-Dong;Yi, Choong-Sung;Kim, Gil-Ho;Shim, Myung-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.4
    • /
    • pp.343-353
    • /
    • 2009
  • The objective of this study is to evaluate the effect of the water quality improvement by water discharge through dams and to provide a benefit estimation methodology, taking domestic situation into consideration, by the replacement cost approach analyzed with a sewage treatment plant instead of an alternative dam. To this end, facility that alternates a dam must have same functions of the discharged water from the dam and the two facilities must be able to be compared objectively. To estimate the benefit, estimation methodology of alternative facility's cost is established and criteria of cost.benefit analysis that are duration period and ratio of large scale repairing expense was presented. As a case study, the water quality improvement benefit of Song-Li-Won dam was evaluated, which is planned to be built on Nae-Sung stream in Nak-Dong River system. The results of applying this methodology to Song-Li-Won dam are 644,006 million won of the annual average discharge and 1,351,526 million won of maximum discharge. The usage of the framework in this study is expected for estimation of water quality improvement benefit in case water quality improvement project is performed.

Assessment of a rain barrel sharing network in Korea using storage-reliability-yield relationship (저류용량-신뢰도-수요량 관계를 이용한 레인배럴 공유 네트워크의 국내 성능 평가)

  • Kwon, Youjeong;Seo, Yongwon;Park, Chang Kun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.11
    • /
    • pp.961-971
    • /
    • 2020
  • The Intergovernmental Panel on Climate Change (IPCC) reported that the amount of precipitation in South Korea would increase regardless of the reduction of Greenhouse Gas (GHG) emissions. Moreover, the temporal and spatial rainfall variation would also increase in the future. Due to the geographic allocation of Korea, more than 80% of the annual precipitation occurs in the wet season from early July to late September. It is expected that the average precipitation in this period will increase from the Representative Concentration Pathways (RCP) scenario projections. These predictions imply an increased variability of available water resources. Rainwater harvesting system is widely used as an alternative water resources today. This study introduces a RBSN (rain barrel sharing network) as an efficient way to utilize alternative water resources under the RCP scenarios. The concept of RBSN combines individual rainwater harvesting system to a sharing network, which make the whole system more reliable. This study evaluated a RBSN in South Korea composed of four users based on a storage-reliability-yield (SRY) relationship. The study area comprises all 17 provincal areas in South Korea. The result showed a huge benefit from a RBSN in Korea under the historical rainfall condition. Even in the climate change condition, the results showed that a RBSN is still beneficial but the changes in reliability are different depending on provinces in Korea. The results of this study shows that a RBSN is a very effective and alternative measure that can deal with the impacts of climate change in the near future.

Landscape Resources Evaluation strategy of rural waterfront villages - An application to a rural waterfront village along the Han river - (수변 농촌 마을의 경관 자원 우수성 평가 방안에 관한 연구 - 한강 유역 수변 농촌 마을 사례적용 -)

  • Lee, Jung-A;Lee, Yoo-Kyoung;Lee, Sang-Woo;Chon, Jin-Hyung
    • Journal of Korean Society of Rural Planning
    • /
    • v.17 no.3
    • /
    • pp.91-101
    • /
    • 2011
  • The purpose of this study is to suggest a landscape resources evaluation strategy of rural waterfront villages along the river. This strategy consists of three phases: 1) an evaluation of rural amenity landscape resources, 2) an evaluation of water landscape resources, and 3) development of a positioning map based on the results of phase 1) and 2) the study result as follows. First, the evaluation method used in phase 1) was modified as a set of proposed evaluation indicators to assess development potential on rural waterfront villages. Second, to evaluate water landscape resources in rural waterfront villages, a series of evaluation index was developed including water area, diversity of water resources, biodiversity, and landscape quality. And the last, the positioning map showed relative position of waterfront villages obtained from two evaluation results: rural amenity landscape resources and water landscape resources. The study examined the proposed strategy as a possible alternative to evaluate landscape quality to 398 rural waterfront villages along the Han River. Landscape resources evaluation strategy proposed here could contribute to government officials and planners to operate systematic planning and management of rural waterfront villages.

IMPLEMENTATION OF A DECISION SUPPORT SYSTEM FOR INTEGRATED RIVER BASIN WATER MANAGEMENT IN KOREA

  • Shim Soon-Do;Shim Kyu-Cheoul
    • Water Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.157-176
    • /
    • 2004
  • This research presents a prototype development and implementation of Decision Support System (DSS) for integrated river basin water management for the flood control. The DSS consists of Relational Database Management System, Hydrologic Data Monitoring System, Spatial Analysis Module, Spatial and Temporal Analysis for Rainfall Event Tool, Flood Forecasting Module, Real-Time Operation of Multi Reservoir System, and Dialog Module with Graphical User Interface and Graphic Display Systems. The developed DSS provides an automated process of alternative evaluation and selection within a flexible, fully integrated, interactive, centered relational database management system in a user-friendly computer environment. The river basin decision-maker for the flood control should expect that she or he could manage the flood events more effectively by fully grasping the hydrologic situation throughout the basin.

  • PDF

Characteristics of water treatment plant sludges on raw water source (취수원별 정수장 슬러지의 물리화학적 특성)

  • Moon, Yong-Taik;Kim, Byung-Goon
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.3 s.61
    • /
    • pp.37-43
    • /
    • 2006
  • Recently, needs for reuse of sludge produced from WTP(water treatment plant) have been increased with shortage of landfill sites and difficulties of the treatment and disposal processes. Therefore, Reusing is becoming an Increasingly popular waste management alternative to divert waste from landfills. In order to research the characteristics of WTP sludges, we used the sludges of C WTP which intake the lake Dae-Cheong and the sludges of S WTP which intake Keum river, The specific surface area of C and S WTP sludges were $0.9986m^2/cc\;and\;1.874m^2/cc$, respectively. The gravity was about $2.0{\sim}2.4$ which are scope of peat or loamy clay. The major minerals of C WTP sludges were kaolinite(48.4%), muscovite(19.5%), and quartz(16.7%). Also, muscovite(31.6%), quartz(30.3%), and kaolinite(17.3%) in S WTP sludges were major minerals.

Responses of Rice (Oryza sativa L.) Yield and Percolation Water Qualities to Alternative Irrigation Waters

  • Shin, Joung-Du;Han, Min-Su;Kim, Jin-Ho;Jung, Goo-Bok;Yun, Sun-Gang;Eom, Ki-Cheol;Lee, Myoung-Sun
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.3
    • /
    • pp.192-196
    • /
    • 2003
  • Objective of this study was to investigate the influences of harvest index and percolation water quality as irrigated the discharge waters from an industrial and a municipal wastewater treatment plants and seawater (1:5 seawater: tap water) as alternative water resources during tillering stage for drought stress. There were four different treatments such as the discharge water from an industrial (textile dyeing manufacture plant) wastewater treatment plant (DIWT), discharge water from the municipal wastewater treatment plant (DMWT), seawater (1:5) and groundwater as a control. For the initial chemical compositions of alternative waters, it appeared that higher concentrations of COD, $Mn^{2+}$, and $Ni^+$ in DIWT were observed than reused criteria of other country for irrigation, and concentrations of $EC_i$, Cl, and $SO_4$ in seawater were higher than that for irrigation. Harvest index was not significantly different between DIWT and DMWT with different irrigation periods in two soil types, but that of seawater (1:5) is decreased with irrigation periods in clay loam soil and not different between 10 days and 20 days of irrigation periods in sandy loam soil. For percolation water qualities, values of sodium adsorption ratio (SAR) are increased with prolonging the irrigation periods of seawater (1:5) and DIWT, but those of DMWT were almost constant through the cultivation periods regardless of the irrigation period in both soil types. EG of percolation waters is eventually increased with prolonging days after irrigation regardless of irrigation periods in both soil types. Therefore, it might be concluded that there was potentially safe to irrigate the discharge water from municipal wastewater treatment plant relative to harvest index, SAR and $EC_i$ values of the ground water through the rice cultivation period at tillering stage for drought period.

Decision Making Model for Agricultural Reservoir using PROMETHEE-AHP (PROMETHEE-AHP를 이용한 농업용 저수지의 의사결정모형)

  • Choi, Eun-Hyuk;Bae, Sang-Soo;Jee, Hong-Kee
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.57-67
    • /
    • 2012
  • This paper presents the Multi Criteria Decision Making (MCDM) to evaluate water resources plan for agricultural reservoir. Preference Ranking Organization METHod for Enrichment Evaluations (PROMETHEE) and Analytic Hierarchy Process (AHP) were used to estimate weight and priority of alternatives to find out the most reasonable and efficient way of water resources assessment. The 6 criteria that both decision maker and beneficiary are satisfied have been identified to secure agricultural water resources and then the priority of 10 subcriteria was set. An enhanced PROMETHEE-AHP model was used to perform pairwise comparison and find out the priority of each alternative because the existing decision making model have uncertainty and ambiguity. Comparison analysis of decision making models was carried out to find a way of suitable decision making and validity of PROMETHEE-AHP model was suggested.

What Can We Do for Our Water Problem? (기획특집 - 우리의 물 문제 어떻게 해결할 것인가?)

  • Lee, Won-Sik
    • Journal of the Korean Professional Engineers Association
    • /
    • v.42 no.3
    • /
    • pp.22-26
    • /
    • 2009
  • As Korea's water resources are dominated by intense summer rainfall and steep mountainous territory, it is inevitable for most of the rainfall in Korea to flow into sea immediately and directly. It cannot help having severe conditions which droughts and floods occur repeatedly due to the seasonal and geological conditions in Korea. Those kinds of disasters will be expected more frequently and seriously in the future because of the unexpected climate changes in the world. Therefore, Korean government will plan to develop small and medium-size dams environmentally friendly, multi-regional water supply system continuously and alternative water resources such as river bank filtrations, rainwater storages and underground dams, in order to prevent floods as well as to secure stable water supply.

  • PDF