• Title/Summary/Keyword: Alternative protein

Search Result 612, Processing Time 0.025 seconds

Effect of saccharin on inflammation in 3T3-L1 adipocytes and the related mechanism

  • Kim, Hye Lin;Ha, Ae Wha;Kim, Woo Kyoung
    • Nutrition Research and Practice
    • /
    • v.14 no.2
    • /
    • pp.109-116
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Excessive intake of simple sugars induces obesity and increases the risk of inflammation. Thus, interest in alternative sweeteners as a sugar substitute is increasing. The purpose of this study was to determine the effect of saccharin on inflammation in 3T3-L1 adipocytes. MATERIALS/METHODS: 3T3-L1 preadipocytes were differentiated into adipocytes. The adipocytes were treated with saccharin (0, 50, 100, and 200 ㎍/mL) for 24 h. Inflammation was induced by exposure of treated adipocytes to lipopolysaccharide (LPS) for 18 h and cell proliferation was measured. The concentration of nitric oxide (NO) was measured by using Griess reagent. Protein expressions of nuclear factor kappa B (NF-κB) and inhibitor κB (IκB) were determined by western blot analysis. The mRNA expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin 1β (IL-1β), interleukin 6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor-α (TNF-α) were determined by real-time PCR. RESULTS: Compared with the control group, the amount of NO and the mRNA expression of iNOS in the LPS-treated group were increased by about 17.6% and 46.9%, respectively, (P < 0.05), and those parameter levels were significantly decreased by saccharin treatment (P < 0.05). Protein expression of NF-κB was decreased and that of IκB was increased by saccharin treatment (P < 0.05). Saccharin decreased the mRNA expression of COX-2 and the inflammation cytokines (IL-1β, IL-6, MCP-1, and TNF-α) (P < 0.05). CONCLUSIONS: The results of this study suggest that saccharin can inhibit LPS-induced inflammatory responses in 3T3-L1 adipocytes via the NF-κB pathway.

HSP27 CONTRIBUTES TO ESTROGEN REGULATION OF OSTEOBLAST APOPTOSIS (조골세포 세포사멸의 Estrogen 조절에 대한 Hsp27의 영향에 관한 연구)

  • Jang, Hyon-Seok;Eune, Jung-Ju;Rim, Jae-Suk;Kwon, Jong-Jin;Choi, Cheol-Min
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.4
    • /
    • pp.323-330
    • /
    • 2004
  • Estrogen may promote osteoblast/osteocyte viability by limiting apoptotic cell death. We hypothesize that hsp27 is an estrogen- regulated protein that can promote osteoblast viability by increasing osteoblast resistance to apoptosis. The purpose of this study was to determine the effect of estrogen treatment and heat shock on $TNF{\alpha}$ - induced apoptosis in the MC3T3-E1 cell line. Cells were treated with 0 - 100 nM $17{\beta}$ estradiol (or ICI 182780) for 0 - 24 hours before heat shock. After recovery, apoptosis was induced by treatment with 0 - 10 ng/ml TNF${\alpha}$. Hsp levels were evaluated by Northern and Western analysis using hsp27, hsp47, hsp70c and hsp70i - specific reagents. Apoptosis was revealed by in situ labeling with Terminal Deoxyribonucleotide Transferase (TUNEL). A 5 - fold increase in hsp27 protein and mRNA was noted after 5 hours of treatment with 10 - 20 nM $17{\beta}$ estradiol prior to heat shock. Increased abundance of hsp47, hsp70c or hsp70i was not observed. TUNEL indicated that estrogen treatment also reduced (50%) MC3T3-E1 cell susceptibility to $TNF{\alpha}$ - induced apoptosis. Treatment with hsp27-specific antisense oligonucleotides prevented hsp27 protein expression and abolished the protective effects of heat shock and estrogen treatment on $TNF{\alpha}$- induced apoptosis. Hsp27 is a determinant of osteoblast apoptosis, and estrogen treatment increases hsp27 levels in cultured osteoblastic cells. Hsp27 contributes to the control of osteoblast apoptosis and may be manipulated by estrogenic or alternative pathways for the improvement of bone mass.

Neurogenic differentiation of human dental stem cells in vitro

  • Lee, Joo-Hee;Um, Soyoun;Song, In-Seok;Kim, Hui Young;Seo, Byoung Moo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.40 no.4
    • /
    • pp.173-180
    • /
    • 2014
  • Objectives: The purpose of this study was to investigate the neurogenic differentiation of human dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), and stem cells from apical papilla (SCAP). Materials and Methods: After induction of neurogenic differentiation using commercial differentiation medium, expression levels of neural markers, microtubule-associated protein 2 (MAP2), class III ${\beta}$-tubulin, and glial fibrillary acidic protein (GFAP) were identified using reverse transcriptase polymerase chain reaction (PCR), real-time PCR, and immunocytochemistry. Results: The induced cells showed neuron-like morphologies, similar to axons, dendrites, and perikaryons, which are composed of neurons in DPSCs, PDLSCs, and SCAP. The mRNA levels of neuronal markers tended to increase in differentiated cells. The expression of MAP2 and ${\beta}$-tubulin III also increased at the protein level in differentiation groups, even though GFAP was not detected via immunocytochemistry. Conclusion: Human dental stem cells including DPSCs, PDLSCs, and SCAP may have neurogenic differentiation capability in vitro. The presented data support the use of human dental stem cells as a possible alternative source of stem cells for therapeutic utility in the treatment of neurological diseases.

Alternanthera mosaic virus - an alternative 'model' potexvirus of broad relevance

  • Hammond, John;Kim, Ik-Hyun;Lim, Hyoun-Sub
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.2
    • /
    • pp.145-180
    • /
    • 2017
  • Alternanthera mosaic virus (AltMV) is a member of the genus Potexvirus which has been known for less than twenty years, and has been detected in Australasia, Europe, North and South America, and Asia. The natural host range to date includes species in at least twenty-four taxonomically diverse plant families, with species in at least four other families known to be infected experimentally. AltMV has been shown to differ from Potato virus X (PVX), the type member of the genus Potexvirus, in a number of ways, including the subcellular localization of the Triple Gene Block 3 (TGB3) protein and apparent absence of interactions between TGB3 and TGB2. Differences between AltMV variants have allowed identification of viral determinants of pathogenicity, and identification of residues involved in interactions with host proteins. Infectious clones of AltMV differing significantly in symptom severity and efficiency of RNA silencing suppression have been produced, suitable either for high level protein expression (with efficient RNA silencing suppression) or for Virus-Induced Gene Silencing (VIGS; with weaker RNA silencing suppression), demonstrating a range of utility not available with most other plant viral vectors. The difference in silencing suppression efficiency was shown to be due to a single amino acid residue substitution in TGB1, and to differences in subcellular localization of TGB1 to the nucleus and nucleolus. The current state of knowledge of AltMV biology, including host range, strain differentiation, host interactions, and utility as a plant viral vector for both protein expression and VIGS are summarized.

Evaluation of rapeseed meal as a protein source to replace soybean meal in growing pigs

  • Kim, Jong Keun;Lei, Xin Jian;Lee, Sang In;Lee, Il Seok;Kim, In Ho
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.2
    • /
    • pp.235-243
    • /
    • 2017
  • A total of 112 crossbred pigs [(Yorkshire ${\times}$ Landrace) ${\times}$ Duroc] with an average body weight (BW) of $27.98{\pm}1.28kg$ were used to evaluate the effects of replacing soybean meal (SBM) with rapeseed meal (RSM) as a source of protein on growth performance, nutrient digestibility, blood characteristics, and fecal noxious gas emission in growing pigs. The pigs were blocked and stratified based on BW into one of four dietary treatments in a 6-week trial. Each treatment consisted of 7 replicate pens with 4 pigs per pen (2 barrows and 2 gilts). Treatments were 1) maize-SBM based diet, 2) diet containing 2% RSM, 3) diet containing 4% RSM, and 4) diet containing 6% RSM. Supplementation with RSM resulted in no differences in growth performance, nutrient digestibility, and noxious gas emission, as compared with SBM supplementation during the experimental period (p > 0.05). Pigs fed with increased dietary RSM (0, 2, 4, and 6% of feed) had linear decreases in average daily gain (ADG) (p = 0.010) and nitrogen digestibility (p = 0.036) and a linear increase in blood creatinine concentration. In conclusion, RSM fed pigs had no detrimental effects on their growth performance, nutrient digestibility, blood characteristics, and fecal noxious gas emissions, as compared with SBM fed pigs. Thus, RSM is a good alternative to SBM as a protein source in growing pigs' diets.

Cloning and characterization of a novel gene with alternative splicing in murine mesenchymal stem cell line C3H/10T1/2 by gene trap screening

  • Wang, Mingke;Sun, Huiqin;Jiang, Fan;Han, Jing;Ye, Feng;Wang, Tao;Su, Yongping;Zou, Zhongmin
    • BMB Reports
    • /
    • v.43 no.12
    • /
    • pp.789-794
    • /
    • 2010
  • A novel gene, designated mgt-6, containing four splicing variants, was isolated from a gene trap clone library of C3H/10T1/2 cells transfected with retroviral promoterless gene-trap vector, ROSAFARY. The transcript variants were differentially expressed in murine tissues and cell lines and differentially responded to diverse stimuli including TGF-${\beta}1$ and mitogen-activated protein kinase (MAPK) inhibitors. The mgt-6 gene encoded a protein of 37 or 11 amino acid residuals with cytoplasmic distribution. However, when C3H/10T1/2 cells were treated with 5-azacytidine, the protein translocated into cell nucleus as indicated by fused LacZ or C-terminally tagged EGFP. Our preliminary results suggest that further study on the role of mgt-6 gene in cell transformation and differentiation may be of significance.

Utilization of Mealworm Tenebrio molitor As a Replacement of Fishmeal in the Diet of Juvenile Rockfish Sebastes schlegeli (조피볼락(Sebastes schlegeli) 치어 사료내 어분대체원으로서 갈색거저리(Tenebrio molitor)의 이용성)

  • Jeong, Seong-Mok;Kim, Esther;Jang, Tae-Ho;Lee, Yong Seok;Lee, Sang-Min
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.4
    • /
    • pp.372-377
    • /
    • 2017
  • A feeding trial was conducted to evaluate the effects of partial replacement of fishmeal (FM) protein in a practical diet for rockfish Sebastes schlegeli juveniles with mealworm Tenebrio molitor meal (WM), in terms of growth performance, feed utilization, whole body composition and hematological parameters. Four isonitrogenous and isoenergetic diets were formulated to contain 8, 16, 24 and 32% WM (designated as WM8, WM16, WM24 and WM32). A FM-based diet without WM inclusion was used as a control. Triplicate groups of rockfish ($2.6{\pm}0.07g$) were hand fed one of the experimental diets to visual satiation twice a day for 8 weeks. Weight gain of fish fed the WM32 diet was lower than that of control. No significant differences were found in daily feed intake, feed efficiency and protein efficiency ratio. The whole-body protein content of fish fed WM0 and WM8 diets were significantly higher than that of fish fed WM32 diet. No statistical differences were observed in hematological parameters. These results indicate that WM has potential as alternative to FM in practical diets for juvenile rockfish and can be used at an inclusion level of up to 24% without having a significant negative effects on growth and feed efficiency.

The produced mealworm meal through organic wastes as a sustainable protein source for weanling pigs

  • Ko, HanSeo;Kim, YoungHwa;Kim, JinSoo
    • Journal of Animal Science and Technology
    • /
    • v.62 no.3
    • /
    • pp.365-373
    • /
    • 2020
  • This study was designed to evaluate the influence of dietary supplementation of Tenebrio molitor larvae (TM) as an alternative source of protein to fish meal on growth response, retention of nutrient, hematological factors, immune system, and intestinal integrity in weaned pigs. A total of 180 weanling pigs (initial bodyweight of 6.27 ± 0.15 kg; 21 d) were distributed based on the bodyweight between 3 treatments with 6 replicates in each treatment including 10 piglets per replicate. The diets corresponding to treatments consisted of a fish meal diet (CON), a fish meal-dried mealworm diet (TM1, 50% replacement of fish meal with TM meal), and a dried mealworm diet (TM2, 100% replacement of fish meal with TM meal). This study was performed in two phases as phase 1 (d 0 to 14) and phase 2 (d 15 to 28). The pigs in the TM2 treatment showed a greater gain to feed ratio compared with the TM1 pigs in phase 1. Throughout the experimental period, the average daily gain (ADG) of the TM1 pigs was significantly greater than that of the TM2 treatment. The IgG concentration was increased in the TM1 and TM2 treatments compared with the CON pigs in phase 1. In conclusion, the supplementation of TM meal (50% replacement of fish meal) did not show any adverse effects in the performance of weanling pigs, however, 100% replacement of fish meal with TM meal is not recommended.

Characterization of tryptophan residues of human coagulation factor V required for binding to phospholipid membranes (인지질막 결합에 필요한 제5혈액응고인자 트립토판잔기들의 역할규명)

  • Kim, Suhng-Wook
    • Journal of Life Science
    • /
    • v.13 no.4
    • /
    • pp.463-472
    • /
    • 2003
  • Interactions between factor Va (HFVa) and membrane phosphatidylserine (PS) regulate the activity of the prothrombinase complex. I have previously shown that two solvent exposed hydrophobic residues located in the C2-domain, Trp2063 and Trp2064, are required for binding to immobilized PS and for expression of procoagulant activity on membranes containing 5% PS. In order to fully define the functional importance of these two residues I have expressed and isolated recombinant factor Va (rHFVa) W2063A/W2064A double mutant. In contrast to the native protein the two glycoforms resulting from alternative glycosylation of Asn2181 eluted as a single peak with rHFVa1 W2063A/W2064A eluting on the leading edge and rHFVa2 W2063A/W2064A eluting on the trailing edge. The double mutant rHFVa2 W2063A/W2064A expressed little or no procoagulant activity on membranes containing 1-10% mol % PS. In contrast, the procoagulant activity of this mutant was slightly greater than the native protein on membranes containing>18 mol % PS. The binding of rHFVa2 W2063A/W2064A to immobilized phospholipid vesicles was markedly reduced compared to the native protein in a surface plasmon resonance binding assay. I conclude that Trp2063 and Trp2064 are required for high affinity binding of factor Va to PS membranes and that this interaction is necessary for assembly of the prothrombinase complex on membranes containing physiological concentrations of PS.

Recent Trend in Bioscavengers for Inactivation of Toxic Organophosphorus Compounds (유기인 계열 독성물질 분해를 위한 바이오스캐빈저 최신 연구 동향)

  • Kim, Heejeong;Jeong, Keunhong;Kye, Young-Sik
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.125-137
    • /
    • 2020
  • In recent years, toxic organophosphorus compounds (OPs) have been used for civilians, becoming a great threat to the world. Alternative to the current treatment policy unpredictable for any prevention, researches on bioscavenger as an improved treatment have been actively conducted. Bioscavengers refer to proteins and enzymes that prevent intoxication by inactivating or binding toxic OPs before they reaches the target. In particular, extensive efforts have been made to develop catalytic bioscavengers that quickly detoxify OPs even with a small dose of the protein by performing multiple binding and hydrolysis processes with OPs. This review introduces the latest studies and results for developing catalytic bioscavengers using molecular evolution and protein engineering techniques. We will briefly present some of the remaining challenges on developing enzymes into clinically approved drugs.