• Title/Summary/Keyword: Alternative fuel oil

Search Result 193, Processing Time 0.01 seconds

A study on the use of pure palm oil (biodiesel-DO) as an alternative fuel on the fuel supply system of marine diesel engines

  • Uy, Dang Van
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.685-693
    • /
    • 2013
  • The biodiesel used as an alternative fuel for diesel engines is well- known, however the price of the bio-diesel is still higher than conventional diesel oil (DO) by 10% to 15% depending on a kind of bio-oil and a country producing the bio-diesel. One of idea to reduce the price of bio-diesel is to use the pure bio-oil as fuel for marine diesel engines, because to use the pure bio-oil as fuel without the esteritification process can reduce the price of bio-fuel. At present time, some experts in some countries who have been carrying out experiments on the use of pure bio-oil produced from rape seeds, sunflower seeds... as fuel for marine diesel engines have achieved important results. In recent years, at Vietnam Maritime University we also have been using the pure palm oil and its blended fuel (Palm oil and DO) as fuel for marine diesel engines in laboratory and on board of ships. The blended fuel is a mixing fuel of the pure palm oil and diesel oil with content of pure palm oil by 5%, 10%, 15%, 20% and 35%. In this paper, we would like to present some results from our experiments to investigate the impacts of using the palm oil and its blended fuel on the important technical features of the fuel supply system of marine diesel engines such as the fuel supply amount for one cycle, fuel supplying pressure, ignition delay time and so on. The results from the research will be good fundamental parameters to support proper operation of marine diesel engines using bio-oil and blended fuels as alternative fuel in near future.

A Study on Characteristics of Rice Bran Oil as an Alternative Fuel in Diesel Engine(I) (디젤기관의 대체연료로서 미장유의 특성 연구(I))

  • 오영택;최승훈;김승원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.15-22
    • /
    • 2002
  • Lately, our world is faced with very serious problems related to the increased air pollution of the exhaust emissions from automobiles. In particular, the exhaust emissions of diesel engines are recognized as a main cause which strongly influence environment. Lots of researchers have attempted to develop various alternative fuels to reduce these harmful emissions in diesel engine. The purpose of this investigation is to evaluate the possibility of esterfied rice bran oil for diesel fuel substitution in a naturally aspirated D. 1. diesel engine, and also find means to reduce smoke emissions in esterfied rice bran oil combustion. The smoke emission of esterfied rice bran oil is reduced remarkably in comparison with commercial gas oil, that is, it was reduced approximately 58.2% at 2500rpm. But, power, torque and brake specific energy consumption didn't have no large differences. It was concluded that esterfied rice bran oil can utilize effectively as an alternative and renew- able fuel fur diesel engine.

Combustion Characteristics of a Direct Injection Agricultural Diesel Engine with Rapeseed Oil (유채유를 연료로 한 직접분사식 농용 디젤기관의 연소특성)

  • Choi, S.H.;Byeon, J.W.
    • Journal of Biosystems Engineering
    • /
    • v.34 no.3
    • /
    • pp.135-139
    • /
    • 2009
  • Harmful exhaust emissions of diesel engines are recognized as main causes of air pollution in these days. But, the direct injection diesel engine is widely used for sake of minimization on energy consumption. Because biodiesel fuel is a renewable and alternative fuel for a diesel engine, its usability is expanded. To investigate the effect of biodiesel fuel(extracted from rapeseed oil) on the characteristics of performance and exhaust emissions in an agricultural diesel engine, the biodiesel fuel derived from rapeseed oil was applied in this study. Smoke emission of esterified rapeseed oil was reduced remarkably by approximately 44.5% at 1500 rpm, full load in comparison with the commercial diesel fuel. The power, torque and brake specific energy consumption of the diesel engine showed very slight differences. It was concluded that esterified rapeseed oil could be utilized effectively as an alternative and renewable fuel for agricultural direct injection diesel engines.

A Study on Characteristics of Rice Bran Oil as an Alternative Fuel in Diesel Engine(II) (디젤기관의 대체연료로서 미장유의 특성 연구(II))

  • 최승훈;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.8-17
    • /
    • 2002
  • In this study, it was tried to analyze not only total hydrocarbon but individual hydrocarbon components from C$_1$to C$\sub$6/ in exhaust gas using gas chromatography to seek the reason fur remarkable differences of smoke emission of diesel fuel, esterfied rice bran oil and blended fuel(esterfied rice bran oil 20vo1-% + diesel fuel 80vo1-%). Individual hydrocarbons(C$_1$ ∼C$\sub$6/) as well as total hydrocarbon of esterfied rice bran oil is reduced remarkably compared with diesel fuel. Although smoke emission of esterfied rice bran oil reduced remarkably compared with commercial diesel fuel, NOx emission of esterfied rice bran oil and blended fuel was increased slightly at high loads and speeds. And, it was tried to reduced NOx emission of them by exhaust gas recirculation(EGR) method. Simultaneous reduction of smoke and NOx emission was achieved with the combination of esterfied rice bran oil and EGR method in consequence.

High Value-added Technology of Oil Sand (오일샌드 고부가화기술 동향)

  • Park, Yong-Ki;Choi, Won Choon;Jeong, Soon Yong;Lee, Chul Wee
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.109-116
    • /
    • 2007
  • As conventional light oil resources deplete, it is becoming necessary to develop unconventional resources. To meet the demand for petrochemical industry, heavier sources such as heavy oil and bitumen are being utilized. Bitumens, a complex hydrocarbon made up of a long chain of molecules, are found in oil sand. It is estimated that 830 billion barrels of oil are located in the oil sand in Alberta, Canada. This paper will review briefly (1) the basic concept of oil sand, bitumen, and heavy oil, (2) methods how to extract oil from oil sand, (3) methods how to upgrade to synthetic crude oil, and (4) economic evaluation of technology.

A study on the usability of used vegetable oil as a diesel substitute in diesel engine (디젤기관의 대체연료로서 폐식용유의 유용성에 관한 연구)

  • O, Yeong-Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.481-488
    • /
    • 1998
  • In recently, lots of researcher have been attached to develope various alternative fuels and to use renewable fuels for solution of the exhaust emission problems. In this study, the usability of used vegetable oil as alternative fuel for diesel engines has been investigated. This paper was compared with the exhaust emissions and performance in diesel engine with used vegetable oil and conventional diesel fuel. Since the vegetable oil includes oxygen of about 10%, it influenced the combustion process strongly. So, the smoke emissions of used vegetable oil were exhausted to be lower than those of diesel fuel. Also, the used vegetable oil was much the same cycle to cycle variation with diesel fuel except $P_{(dP}$d.theta.)max/, but the cycle to cycle variation of used vegetable oil was reduced significantly by preheating of the fuel and swirling of the intake air. It was concluded that used vegetable oil could be utilized effectively as renewable fuel for diesel engine.e.

Inedible Vegetable Oil as Substitute Fuel in Compression Ignition Engines-Jatropha Oil

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.14 no.4
    • /
    • pp.153-162
    • /
    • 2009
  • The use of inedible vegetable oils as substitute for diesel fuel in compression ignition engine is of significance because of the great need for edible oil as food, and the reduction of biodiesel production cost etc. Jatropha curcas oil which is a leading candidate for the commercialization of inedible vegetable oils is selected in this study for reviewing the application in CI engine as an alternative fuel. The important properties of jatropha oil (JO) and JO biodiesel are summarized from the various sources in the literature. It is found that five different types of alternative fuel from JO such as neat JO, JO blends with diesel or other fuel, neat JO biodiesel, JO biodiesel blends with diesel or other fuel and degummed JO were extensively examined in the diesel engine. Two different application types of alternative fuels from JO such as preheating and dual fuelling were also tested, It should be pointed out that most of these applications are limited to single cylinder conditions. The systematic study for the selection of effective application method is required. It is clear that the blends of JOME and diesel can replace diesel fuel up to 10% by volume for running the existing common rail direct injection systems without any durability problems. The systematic assessment of spray characteristics of different types of JO and its derivatives for use as diesel engine fuel is also required.

  • PDF

An Effect in of the Bio-oil as an Alternative Fuel on the Performance of Diesel Engine (Bio-oil이 디젤기관의 기관성능에 미치는 영향)

  • Cho, Ki-Hyon;Chung, Hyung-Kil;Kang, Hyung-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.1
    • /
    • pp.11-19
    • /
    • 2001
  • This study was carried out to investigate the feasibility of the used frying oil as a bin-oil which was one of the alternative fuel for diesel engine. From tests of engine performance, it was shown that the bio-oil and blends and the sufficient potential as alternative fuels of diesel engine except NOx and Smoke emission.

  • PDF

Combustion and Emission Characteristics of Diesel Engine by Mixing DME and Bunker Oil

  • Ryu, Younghyun;Dan, Tomohisa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.7
    • /
    • pp.885-893
    • /
    • 2012
  • DME (Dimethyl ether) is regarded as one of the candidates of alternative fuels for diesel engine, because of its higher cetane number suitable for a compression ignition engine. Also, DME is a simple chemical structure, colorless gas that is easily liquefied and transported. On the other hand, Bunker oil (JIS C heavy oil) has long been used as a basic fuel in marine diesel engines and is the lowest grade fuel oil. In this study, the combustion and emission characteristics were measured experimentally in the direct injection type diesel engine operated with DME and Bunker oil mixed fuel. From our experimental results, it is induced that DME and Bunker oil blended fuel would be an effective fuel which can reduces the concentration of harmful matter in exhaust gases.

The Affect of Fuel Properties on Exhaust Emissions Formation of Used Vegetable Oil in a Diesel Engine (폐식용유를 연료로 하는 디젤 기관(機關)의 배기(排氣) 배출물 생성(生成)에 미치는 연료(燃料) 성상(性狀)의 영향(影響))

  • Oh, Y.Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.162-175
    • /
    • 1995
  • Exhaust emissions in diesel engine are affected by fuel properties, but the reason for this is not clear. Especially, the recent strong interest in using low-grade fuel such as used vegetable oil as alternative diesel fuel demands extensive investigation in order to clarify the exhaust emissions. The purpose of this study is to evaluate the feasibility of a used vegetable oil as an alternative fuel in a diesel engine in terms of exhaust emissions. The emission concentration of used vegetable oil such as formaldehyde and acrolein is two times than that of diesel fuel. However, since that of alcohol is ten times than that of used vegetable oil and that concentration is very low, it is not a problem for human health.

  • PDF