• Title/Summary/Keyword: Alternative expression

Search Result 544, Processing Time 0.03 seconds

How are Bayesian and Non-Parametric Methods Doing a Great Job in RNA-Seq Differential Expression Analysis? : A Review

  • Oh, Sunghee
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.2
    • /
    • pp.181-199
    • /
    • 2015
  • In a short history, RNA-seq data have established a revolutionary tool to directly decode various scenarios occurring on whole genome-wide expression profiles in regards with differential expression at gene, transcript, isoform, and exon specific quantification, genetic and genomic mutations, and etc. RNA-seq technique has been rapidly replacing arrays with seq-based platform experimental settings by revealing a couple of advantages such as identification of alternative splicing and allelic specific expression. The remarkable characteristics of high-throughput large-scale expression profile in RNA-seq are lied on expression levels of read counts, structure of correlated samples and genes, larger number of genes compared to sample size, different sampling rates, inevitable systematic RNA-seq biases, and etc. In this study, we will comprehensively review how robust Bayesian and non-parametric methods have a better performance than classical statistical approaches by explicitly incorporating such intrinsic RNA-seq specific features with flexible and more appropriate assumptions and distributions in practice.

Intron retention decreases METTL3 expression by inhibiting mRNA export to the cytoplasm

  • Sangsoo Lee;Haesoo Jung;Sunkyung Choi;Namjoon Cho;Eun-Mi Kim;Kee Kwang Kim
    • BMB Reports
    • /
    • v.56 no.9
    • /
    • pp.514-519
    • /
    • 2023
  • Methyltransferase-like 3 (METTL3), a key component of the m6A methyltransferase complex, regulates the splicing, nuclear transport, stability, and translation of its target genes. However, the mechanism underlying the regulation of METTL3 expression by alternative splicing (AS) remains unknown. We analyzed the expression pattern of METTL3 after AS in human tissues and confirmed the expression of an isoform retaining introns 8 and 9 (METTL3-IR). We confirmed the different intracellular localizations of METTL3-IR and METTL3 proteins using immunofluorescence microscopy. Furthermore, the endogenous expression of METTL3-IR at the protein level was different from that at the mRNA level. We found that 3'-UTR generation by intron retention (IR) inhibited the export of METTL3-IR mRNA to the cytoplasm, which in turn suppressed protein expression. To the best of our knowledge, this is the first study to confirm the regulation of METTL3 gene expression by AS, providing evidence that the suppression of METTL3 protein expression by IR is an integral part of the mechanism by which 3'-UTR generation regulates protein expression via inhibition of RNA export to the cytoplasm.

3'UTR Diversity: Expanding Repertoire of RNA Alterations in Human mRNAs

  • Dawon Hong;Sunjoo Jeong
    • Molecules and Cells
    • /
    • v.46 no.1
    • /
    • pp.48-56
    • /
    • 2023
  • Genomic information stored in the DNA is transcribed to the mRNA and translated to proteins. The 3' untranslated regions (3'UTRs) of the mRNA serve pivotal roles in post-transcriptional gene expression, regulating mRNA stability, translation, and localization. Similar to DNA mutations producing aberrant proteins, RNA alterations expand the transcriptome landscape and change the cellular proteome. Recent global analyses reveal that many genes express various forms of altered RNAs, including 3'UTR length variants. Alternative polyadenylation and alternative splicing are involved in diversifying 3'UTRs, which could act as a hidden layer of eukaryotic gene expression control. In this review, we summarize the functions and regulations of 3'UTRs and elaborate on the generation and functional consequences of 3'UTR diversity. Given that dynamic 3'UTR length control contributes to phenotypic complexity, dysregulated 3'UTR diversity might be relevant to disease development, including cancers. Thus, 3'UTR diversity in cancer could open exciting new research areas and provide avenues for novel cancer theragnostics.

Molecular Analysis of Alternative Transcripts of the Equine Cordon-Bleu WH2 Repeat Protein-Like 1 (COBLL1) Gene

  • Park, Jeong-Woong;Jang, Hyun-Jun;Shin, Sangsu;Cho, Hyun-Woo;Choi, Jae-Young;Kim, Nam-Young;Lee, Hak-Kyo;Do, Kyong-Tak;Song, Ki-Duk;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.6
    • /
    • pp.870-875
    • /
    • 2015
  • The purpose of this study was to investigate the alternative splicing in equine cordon-bleu WH2 repeat protein-like 1 (COBLL1) gene that was identified in horse muscle and blood leukocytes, and to predict functional consequences of alternative splicing by bioinformatics analysis. In a previous study, RNA-seq analysis predicted the presence of alternative spliced isoforms of equine COBLL1, namely COBLL1a as a long form and COBLL1b as a short form. In this study, we validated two isoforms of COBLL1 transcripts in horse tissues by the real-time polymerase chain reaction, and cloned them for Sanger sequencing. The sequencing results showed that the alternative splicing occurs at exon 9. Prediction of protein structure of these isoforms revealed three putative phosphorylation sites at the amino acid sequences encoded in exon 9, which is deleted in COBLL1b. In expression analysis, it was found that COBLL1b was expressed ubiquitously and equivalently in all the analyzed tissues, whereas COBLL1a showed strong expression in kidney, spinal cord and lung, moderate expression in heart and skeletal muscle, and low expression in thyroid and colon. In muscle, both COBLL1a and COBLL1b expression decreased after exercise. It is assumed that the regulation of COBLL1 expression may be important for regulating glucose level or switching of energy source, possibly through an insulin signaling pathway, in muscle after exercise. Further study is warranted to reveal the functional importance of COBLL1 on athletic performance in race horses.

Pressure-Overload Cardiac Hypertrophy Is Associated with Distinct Alternative Splicing Due to Altered Expression of Splicing Factors

  • Kim, Taeyong;Kim, Jin Ock;Oh, Jae Gyun;Hong, Seong-Eui;Kim, Do Han
    • Molecules and Cells
    • /
    • v.37 no.1
    • /
    • pp.81-87
    • /
    • 2014
  • Chronic pressure-overload cardiac hypertrophy is associated with an increased risk of morbidity/mortality, largely due to maladaptive remodeling and dilatation that progresses to dilated cardiomyopathy. Alternative splicing is an important biological mechanism that generates proteomic complexity and diversity. The recent development of next-generation RNA sequencing has improved our understanding of the qualitative signatures associated with alternative splicing in various biological conditions. However, the role of alternative splicing in cardiac hypertrophy is yet unknown. The present study employed RNA-Seq and a bioinformatic approach to detect the RNA splicing regulatory elements involved in alternative splicing during pressure-overload cardiac hypertrophy. We found GC-rich exonic motifs that regulate intron retention in 5' UTRs and AT-rich exonic motifs that are involved in exclusion of the AT-rich elements that cause mRNA instability in 3' UTRs. We also identified motifs in the intronic regions involved in exon exclusion and inclusion, which predicted splicing factors that bind to these motifs. We found, through Western blotting, that the expression levels of three splicing factors, ESRP1, PTB and SF2/ASF, were significantly altered during cardiac hypertrophy. Collectively, the present results suggest that chronic pressure-overload hypertrophy is closely associated with distinct alternative splicing due to altered expression of splicing factors.

Identification and Characterization of Alternative Promoters of the Rice MAP Kinase Gene OsBWMK1

  • Koo, Sung Cheol;Choi, Man Soo;Chun, Hyun Jin;Park, Hyeong Cheol;Kang, Chang Ho;Shim, Sang In;Chung, Jong Il;Cheong, Yong Hwa;Lee, Sang Yeol;Yun, Dae-Jin;Chung, Woo Sik;Cho, Moo Je;Kim, Min Chul
    • Molecules and Cells
    • /
    • v.27 no.4
    • /
    • pp.467-473
    • /
    • 2009
  • Our previous study suggested that OsBWMK1, a gene which encodes a member of the rice MAP kinase family, generates transcript variants which show distinct expression patterns in response to environmental stresses. The transcript variants are generated by alternative splicing and by use of alternative promoters. To test whether the two alternative promoters, pOsBWMK1L (promoter for the OsBWMK1L splice variant) and pOsBWMK1S (promoter for the OsBWMK1S splice variant), are biologically functional, we analyzed transgenic plants expressing GUS fusion constructs for each promoter. Both pOsBWMK1L and pOsBWMK1S are biologically active, although the activity of pOsBWMK1S is lower than that of pOsBWMK1L. Histochemical analysis revealed that pOsBWMK1L is constitutively active in most tissues at various developmental stages in rice and Arabidopsis, whereas pOsBWMK1S activity is spatially and temporally restricted. Furthermore, the expression of pOsBWMK1S::GUS was upregulated in response to hydrogen peroxide, a plant defense signaling molecule, in both plant species. These results suggest that the differential expression of OsBWMK1 splice variants is the result of alternative promoter usage and, moreover, that the mechanisms controlling OsBWMK1 gene expression are conserved in both monocot and dicot plants.

Alternative splicing and expression analysis of High expression of osmotically responsive genes1 (HOS1) in Arabidopsis

  • Lee, Jeong-Hwan;Kim, Soo-Hyun;Kim, Jae-Joon;Ahn, Ji-Hoon
    • BMB Reports
    • /
    • v.45 no.9
    • /
    • pp.515-520
    • /
    • 2012
  • High expression of osmotically responsive genes1 (HOS1), a key regulator of low temperature response and flowering time, encodes an E3 ubiquitin ligase in Arabidopsis. Here, we report characterization of a newly identified splice variant (HOS1-L) of HOS1. Comparative analyses revealed that HOS1-L has a longer 5' nucleotide sequence than that of the previously identified HOS1 (HOS1-S) and that its protein sequence was more conserved than that of HOS1-S in plants. HOS1-L transcripts were spatio-temporally more abundant than those of HOS1-S. The recovery rate of HOS1-S expression was faster than that of HOS1-L after cold treatment. Diurnal oscillation patterns of HOS1-L revealed that HOS1-L expression was affected by photoperiod. An in vitro pull-down assay revealed that the HOS1-L protein interacted with the ICE1 protein. HOS1-L overexpression caused delayed flowering in wild-type plants. Collectively, these results suggest regulation of HOS1 expression at the post-transcriptional level.

Regulation of Abiotic Stress Response by Alternative Splicing in Plants (식물에서 선택적 스플라이싱에 의한 스트레스 반응 조절)

  • Seok, Hye-Yeon;Lee, Sun-Young;Moon, Yong-Hwan
    • Journal of Life Science
    • /
    • v.30 no.6
    • /
    • pp.570-579
    • /
    • 2020
  • Pre-mRNA splicing is a crucial step for the expression of information encoded in eukaryotic genomes. Alternative splicing occurs when splice sites are differentially recognized and more than one transcript and potentially multiple proteins are generated from the same pre-mRNA. The decision on which splice sites are selected under particular cellular conditions is determined by the interaction of proteins, globally designated as splicing factors, that guide spliceosomal components, and thereby the spliceosome, to their respective splice sites. Abiotic stresses such as heat, cold, salt, drought, and hypoxia markedly alter alternative splicing patterns in plants, and these splicing events implement changes in gene expression for adaptive responses to adverse environments. Alteration of the expression or activity of splicing factors results in alternative splicing under cold, heat, salt, or drought conditions, and alternatively spliced isoforms respond distinctly in several aspects such as expression in different tissues or degradation via nonsense-mediated decay. Spliced isoforms may vary in their subcellular localization or have different biological functions under stress conditions. Despite numerous studies, functional analyses of alternative splicing have been limited to particular abiotic stresses; the molecular mechanism of alternative splicing in abiotic stress response remains uncovered which suggests that further studies are needed in this area.

Molecular analysis of alternative transcripts of equine AXL receptor tyrosine kinase gene

  • Park, Jeong-Woong;Song, Ki-Duk;Kim, Nam Young;Choi, Jae-Young;Hong, Seul A;Oh, Jin Hyeog;Kim, Si Won;Lee, Jeong Hyo;Park, Tae Sub;Kim, Jin-Kyoo;Kim, Jong Geun;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.10
    • /
    • pp.1471-1477
    • /
    • 2017
  • Objective: Since athletic performance is a most importance trait in horses, most research focused on physiological and physical studies of horse athletic abilities. In contrast, the molecular analysis as well as the regulatory pathway studies remain insufficient for evaluation and prediction of horse athletic abilities. In our previous study, we identified AXL receptor tyrosine kinase (AXL) gene which was expressed as alternative spliced isoforms in skeletal muscle during exercise. In the present study, we validated two AXL alternative splicing transcripts (named as AXLa for long form and AXLb for short form) in equine skeletal muscle to gain insight(s) into the role of each alternative transcript during exercise. Methods: We validated two isoforms of AXL transcripts in horse tissues by reverse transcriptase polymerase chain reaction (RT-PCR), and then cloned the transcripts to confirm the alternative locus and its sequences. Additionally, we examined the expression patterns of AXLa and AXLb transcripts in horse tissues by quantitative RT-PCR (qRT-PCR). Results: Both of AXLa and AXLb transcripts were expressed in horse skeletal muscle and the expression levels were significantly increased after exercise. The sequencing analysis showed that there was an alternative splicing event at exon 11 between AXLa and AXLb transcripts. 3-dimentional (3D) prediction of the alternative protein structures revealed that the structural distance of the connective region between fibronectin type 3 (FN3) and immunoglobin (Ig) domain was different between two alternative isoforms. Conclusion: It is assumed that the expression patterns of AXLa and AXLb transcripts would be involved in regulation of exercise-induced stress in horse muscle possibly through an $NF-{\kappa}B$ signaling pathway. Further study is necessary to uncover biological function(s) and significance of the alternative splicing isoforms in race horse skeletal muscle.

Literal expression of nausea in medical classics written until Tang dynasty (당대 이전의 오심 증상 표현)

  • Ko, Bok-Young;Chang, Jae-Soon;Kim, Ki-Wang
    • Journal of Korean Medical classics
    • /
    • v.26 no.1
    • /
    • pp.79-83
    • /
    • 2013
  • Objective : Osim((惡心) stands for nausea which usually precede vomiting(嘔吐). Although it is very common symptom, we can't find the word Osim in some ancient classics. So we tried to find when it had appeared, and what had been its substitute in former medical classics. Material and Methods : The digitalized text in Zhonghuayidian(中華醫典) was used for text search. The text search was performed chronologically. Results : We found that there had been yokto(欲吐), yokgu(欲嘔), geongu(乾嘔), beon(煩), beonsim (煩心), simbeon(心煩), min(悶), ongi(溫氣) as the precedent expression of osim(惡心), which had appeared in Jebyungwonhuron(諸病源候論, 610) for the first time. Conclusion : Until Tang dynasty, there had been kinds of alternative expressions correspond to osim(nausea).