• Title/Summary/Keyword: Alternative diesel fuel

Search Result 226, Processing Time 0.034 seconds

A Study on Performance and Simultaneous Reduction of Smoke and NOx Emission by an DMM Addition and Application of EGR Method in a Diesel Engine (디젤기관에세 DMM 첨가와 EGR 방법 적용에 의한 기관성능 및 매연과 NOx의 동시저감 연구)

  • Oh Young-Taig;Choi Seung-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.208-214
    • /
    • 2006
  • Dimethoxy methane$(CH_3-O-CH_2-O-CH_3)$, also known as methylal or DMM, is an oxygenated additive that contains 42.5% oxygen by weight and is soluble in diesel fuel. It is a colorless liquid and a gas-to-liquid chemical 방tat has been evaluated for use as a diesel fuel component. Experiments were conducted by using the five blends with different volumetric percentage of DMM(2.5, 5, 7.5, 10, and 12.5%) in baseline diesel fuel. The test engine was single cylinder, four stroke, DI diesel engine unmodified. Also, data was collected for steady state operation at 24 engine speed-load conditions. The focus of this study was to investigate the effects of the addition of oxygenated fuel to diesel fuel on the engine-out emissions and the performance. Smoke emissions of all DMM blends were reduced substantially in comparison with conventional diesel fuel. These results indicate that DMM may be an effective blendstock for diesel fuel as an environment-friendly alternative fuel. Besides, this study showed that simultaneous reduction of smoke and NOx emissions could be achieved by oxygenated fuel and EGR method that was applied to decrease NOx emissions increasing with smoke emissions reduction.

COMBINED EFFECTS OF BD20, LOW SULFUR DIESEL FUEL AND DIESEL OXIDATION CATALYST IN A HD DIESEL ENGINE

  • Baik, D.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.653-658
    • /
    • 2006
  • The enormous increase in the use of fossil energy sources throughout the world has caused severe air pollution and a depletion of energy. Besides, it seems very difficult to comply with the upcoming stringent emission standards in vehicles. In order to develop low emission engines, research on better qualified fuels as alternative fuels to secure high engine performance becomes a more important issue than ever. Since sulfur contained in diesel fuel is transformed in sulfate-laden particulate matters when a catalyst is applied, it is necessary to provide low sulfur fuels before any Pt-based oxidation catalysts are applied. But the excessive reduction of sulfur levels may cause the lubricity of fuel and engine performance to degrade. In this aspect, biodiesel fuel derived from rice bran is applied to compensate viscosity lost in the desulfurization treatment. This research is focused on the performance of an 11,000cc diesel engine and the emission characteristics by the introduction of ULSD(Ultra Low Sulfur Diesel), BD20(Diesel 80%+Biodiesel 20%) and a diesel oxidation catalyst, where BD20 is used to improve the lubricity of fuel in fuel injection systems as fuel additives or alternative fuels.

Power and Emission Characteristics of DI Diesel Engine with a Soybean Bio-diesel Fuel (바이오디젤유를 사용한 직접분사식 디젤엔진의 출력성능 및 배출가스 특성)

  • Choi, B.C.;Lee, C.H.;Park, H.J.
    • Journal of Power System Engineering
    • /
    • v.6 no.3
    • /
    • pp.11-16
    • /
    • 2002
  • This paper describes the power performance and emission characteristics of the high speed direct injection diesel engine (2.9 litter displacements) driven by soybean oil asknown a bio diesel fuel. The results were compared to diesel fuel with blending bio diesel fuels. The soybean bio diesel fuel was added in the diesel fuel in concentration varying from 25% to 75% volume rates. We measured the emissions according to ECE 13 mode and full load, fixedengine speed. When the 25% bio diesel fuel was used, NOx emission at the ECE 13 mode test slightly decreased compared with diesel base engine. Over engine speed of 2000 rpm, the level of unburned hydrocarbon(HC) and carbon monoxide(CO) were the same to the diesel engine. Smoke emission decreased asthe blending bio diesel fuel rate increased.

  • PDF

Utilization of alternative marine fuels for gas turbine power plant onboard ships

  • El Gohary, M. Morsy;Seddiek, Ibrahim Sadek
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.21-32
    • /
    • 2013
  • Marine transportation industry is undergoing a number of problems. Some of these problems are associated with conventional marine fuel-oils. Many researchers have showed that fuel-oil is considered as the main component that causes both environmental and economic problems, especially with the continuous rising of fuel cost. This paper investigates the capability of using natural gas and hydrogen as alternative fuel instead of diesel oil for marine gas turbine, the effect of the alternative fuel on gas turbine thermodynamic performance and the employed mathematical model. The results showed that since the natural gas is categorized as hydrocarbon fuel, the thermodynamic performance of the gas turbine cycle using the natural gas was found to be close to the diesel case performance. The gas turbine thermal efficiency was found to be 1% less in the case of hydrogen compared to the original case of diesel.

Combustion and Emission Characteristics of Diesel Engine by Mixing DME and Bunker Oil

  • Ryu, Younghyun;Dan, Tomohisa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.7
    • /
    • pp.885-893
    • /
    • 2012
  • DME (Dimethyl ether) is regarded as one of the candidates of alternative fuels for diesel engine, because of its higher cetane number suitable for a compression ignition engine. Also, DME is a simple chemical structure, colorless gas that is easily liquefied and transported. On the other hand, Bunker oil (JIS C heavy oil) has long been used as a basic fuel in marine diesel engines and is the lowest grade fuel oil. In this study, the combustion and emission characteristics were measured experimentally in the direct injection type diesel engine operated with DME and Bunker oil mixed fuel. From our experimental results, it is induced that DME and Bunker oil blended fuel would be an effective fuel which can reduces the concentration of harmful matter in exhaust gases.

EXPERIMENTAL INVESTIGATION AND COMPARISON OF SPRAY AND COMBUSTION CHARACTERISTICS OF GTL AND DIESEL FUELS

  • Kim, K.S.;Beschieru, V.;Jeong, D.S.;Lee, Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.275-281
    • /
    • 2007
  • GTL (Gas To Liquid) has the potential to be used in diesel engines as a clean alternative fuel due to advantages in emission reduction, particularly soot reduction. Since the physical properties of GTL fuel differ from those of diesel fuel to some extent, studying how this difference in characteristics of GTL and diesel fuels affects spray and combustion in diesel engines is important. In this study, visual investigation of sprays and flames from GTL and diesel fuels in a vessel simulating diesel combustion was implemented. The effects of various parameters and conditions, such as injection pressure, chamber temperature and pilot injection on liquid-phase fuel length and auto-ignition delay were investigated. It was determined that GTL has a somewhat shorter liquid-phase fuel length, which explains why there is less contact between the fuel liquid-phase and flame for GTL fuel compared to diesel fuel.

A Study on the Combustion Characteristics of DEE as an Alternative Fuel in Diesel Engine (디젤기관의 대체연료로서 DEE의 연소 특성에 관한 연구)

  • 유경현;최준혁;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.47-56
    • /
    • 2001
  • Nitrogen oxides(NOx) and smoke emissions of diesel engine are regarded as a source of air pollution, and there is a global trend to enforce more stringent regulations on these exhaust gas emissions. However, the trade-off relation of NOx and smoke is a main obstacle to reduce both of them simultaneously. In this paper, experiments were conducted with an oxygenated fuel(diethyl ether) as an effective way to improve the trade-off relation of NOx and smoke. Exhaust emissions of diesel fuels with DEE were influenced by the additive content of DEE and the injection timing. Especially, DEE effected more at the high engine speed and load than at the low engine speed and load. Diesel fuel blended with DEE 10% was a desirable blend for the simultaneous reduction of NOx and smoke.

  • PDF

An Effect in of the Bio-oil as an Alternative Fuel on the Performance of Diesel Engine (Bio-oil이 디젤기관의 기관성능에 미치는 영향)

  • Cho, Ki-Hyon;Chung, Hyung-Kil;Kang, Hyung-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.1
    • /
    • pp.11-19
    • /
    • 2001
  • This study was carried out to investigate the feasibility of the used frying oil as a bin-oil which was one of the alternative fuel for diesel engine. From tests of engine performance, it was shown that the bio-oil and blends and the sufficient potential as alternative fuels of diesel engine except NOx and Smoke emission.

  • PDF

An Experimental Study on the Exhaust pollutant Reduction in Diesel Engine using a Rice-Bran Oil (미강유를 사용한 디젤기관에서의 배기오염물질 저감에 관한 실험적 연구)

  • 이준서
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.754-762
    • /
    • 1998
  • Exhaust emissions in diesel engine are affected by fuel properties but the reason for this is not clear. Especially the recent strong interest in using low-grade fuel demands extensibe investigation in order to clarify the exhaust emissions. Bio-Diesel oil has a great possibility to solve the pollution problem caused by the exhaust gas from diesel engine vehicles. The use of bio-oils in diesel engines has received considerable atten-tion to the forseeable depletion of world oil supplies. So bio-diesel oil has been attracted with attentions for alternative and clean energy source. The purpose of this paper is to evaluate the fea-sibility of the rice-bran oil for alternative fuel in a diesel engine with rgard to exhaust emis-sions.

  • PDF

An Experimental Study on Spray Characteristics of Bio-diesel fuel in Three Injectors with Different Operating Mechanism for Common-rail System (커먼레일 시스템용 구동방식에 따른 인젝터별 바이오디젤 분무 특성 연구)

  • Sung, Gisu;Kim, Jinsu;Jeong, Seokchul;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.20 no.2
    • /
    • pp.88-94
    • /
    • 2015
  • Recently, exhaust gas regulation has been gradually strengthened due to depletion of fossil fuels and environmental problem like a global warming. Due to this global problem, the demand for eco-friendly vehicle development is rapidly increasing. A clean diesel vehicle is considered as a realistic alternative. The common-rail fuel injection system, which is the key technology of the clean diesel vehicle, has adopted injection strategies such as high pressure injection, multiple injection for better atomization of the fuel. In addition, the emission regulations in the future is expected to be more stringent, which a conventional engine is difficult to deal with. One of the way for actively proceeding is the study of alternative fuels. Among them, the bio-diesel has been attracted as an alternative of diesel. So, in this study, spray characteristics of bio-diesel was analyzed in the common-rail fuel injection system with three injectors driven by different operating mechanism.