• 제목/요약/키워드: Alternative Production System

검색결과 424건 처리시간 0.025초

식품과 생의학을 위한 계란 항체생산과 IgY 기술의 활용 (Egg Antibody Farming and IgY Technology for Food and Biomedical Applications)

  • 심정석
    • 한국가금학회:학술대회논문집
    • /
    • 한국가금학회 2003년도 국제 심포지움
    • /
    • pp.37-54
    • /
    • 2003
  • 포유동물과 마찬가지로 암탉은 태어날 병아리에게 계란을 통해서 면역항체를 이행시켜 해로운 병원균의 침입으로부터 병아리를 보호해준다 . 즉 어미 닭의 혈청으로부터 특정항체가 난황에 이행되고 이 면역항체를 IgY 라고 부르며 이것이 발육중인 태아와 갓 부화한 병아리의 면역항체가 되는 것이다. 상대적으로 면역능력이 낮은 갓 부화한 병아리는 병원균에 대한 방어능력을 계란을 통해 어미로부터 받은 항체를 통해 얻는다. 그 결과, 난황 내에는 많은 양의 IgY를 보유하게 되고 이 면역물질이 있으므로 말미암아 계란 내에 들어와 있는 병원균이냐 외부에서 들어오려는 병원균을 무력화시켜 아무 탈없이 병아리가 부화하게 된다 . 이처럼 산란계에 각종 병원균을 접종함으로서 면역항체 IgY 가 많이 들어 있는 계란을 생산할 수 있다. 난황 1 개에는 136~340 mg 의 IgY 가 들어있고 이는 난황 $m\ell$ 당 8~20 mg의 IgY 가 함유되어 있는 셈이다. 그리고 산란계 한 마리로부터 일년에 30 g 이상의 IgY 를 얻을 수 있다. 산란계에 항원을 접종하여 난황으로부터 IgY 를 수확하면 IgY g 당 10$ 도 안 되는 낮은 비용으로 항체를 얻을 수 있게 된다. 이에 비하여 포유동물의 경우 19 의 IgG 를 얻는데 20,000$가 소요된다. 이와 같은 IgY 제조기술을 의학, 공중 보건, 수의학, 식품안전과 같은 분야에 응용을 함으로써 잠재력이 높은 새로운 시장을 여는 장이 될 것이다. IgY 기술을 더욱 폭넓게 활용할 수 있는 분야들로는 생물제제나 의학진단기구, 생리적 기능성 물질이나 기능성식품의 개발, 질병예방을 위한 경구투여제 그리고 질병감염을 막는 특정 병원균성 항미생물 제제와 같은 것들을 들 수 있다. 이 논문에서 우리가 강조하고자 하는 것은 IgY 가 함유된 계란을 생산하고 섭취하였을 때 특정항체들의 결합을 통해 병원성 미생물의 성장이나 군체를 형성하는 것을 무력화시켜 결과적으로 병원균을 감소시키거나 억제시킨다는 점이다. 오늘날 약물에 내성을 지닌 박테리아의 출현으로 질병감염을 막는데 항생제의 사용효과가 점차 감소하고 있기 때문에 이러한 항생제를 대체할 수 있는 방안으로 계란항체를 이용할 수 있다.

  • PDF

식물 코팅 소재 선발법과 작물들에 대한 콩 오일의 증산 억제 효과 (Screening Methods for Plant-Coating Materials and Transpiration Inhibitory Effect of Soybean Oil to Crops)

  • 정인홍;박노봉;김상열;나영은;김순일
    • 한국자원식물학회지
    • /
    • 제27권4호
    • /
    • pp.380-391
    • /
    • 2014
  • 작물을 비롯한 식물체들은 작물 생산량 감소에 중요한 요인인 고온 건조풍에 의해 영향을 받는다. 이러한 영향으로부터 식물체들을 보호할 수단으로 코팅재를 고려할 수 있다. 이 연구에서 다양한 요인들에 의해 일어나는 급격한 증산작용으로부터 작물을 보호할 코팅소재를 탐색하기 위한 실내 선발법들을 확립했다. 강낭콩 유묘 포트의 무게 변화를 6일 동안 측정한 시험에서 아비온 처리구는 무처리구에 비해 유의하게 무게 감소를 억제하였다(P = 0.05). 하지만 이 방법은 장시간이 소요되는 단점이 있어 보다 단순한 방법으로 염화코발트지가 수분 접촉 시 푸른색에서 붉은색으로 변화는 색 변화법을 이용하였다. 밀납, 구아검, 유동파라핀, 콩오일 및 PE-635가 처리 30분 및 1시간 후 각각 37%와 43%의 방수력을 나타냈다. 하지만 이들 소재들도 2시간 후에는 유의할만한 방수효과를 보이지 않았다. 비록 이들 방법들이 코팅 소재를 탐색하는데 적절하다 할지라도, 보다 과학적이고 객관적인 자료들을 도출해 낼 선발법이 필요하다. 그래서 고안한 방법이 광합성측정기를 이용하여 증산율을 측정하는 방법이었다. 야외에서 재배한 보리 잎을 이용한 시험에서 2% 콩오일과 아비온 10배 희석액 처리가 증산율 억제효과를 나타냈다. 또한 옥수수 유묘 및 살구나무 신초를 이용한 시험에서 2% 유동파라핀액과 살구씨오일, 아마씨오일, 올리브오일 및 콩오일과 같은 식물체 정유들이 유의할만한 증산율 억제효과를 나타냈다(P = 0.05). 특히, 유동파라핀 및 콩오일 2%를 출수 후 2주 이상된 벼에 처리하였을 때 비슷한 증산율 억제력을 보였다. 또한 2% 콩오일과 전착제 혼합물을 옥수수 유묘에 처리 시 전착제 단독으로 처리한 것에 비해 증산율 억제효과가 증가했다. 이는 전착제가 식물체 잎 표면에서 이들 소수성 소재들이 보다 더 균일하게 확산하는데 도움을 주기 때문으로 보인다. 이 소수성 소재가 잎 표면의 기공들을 효과적으로 잘 도포하고 있음도 전자현미경으로 확인하였다. 이상의 결과는 이들 소수성 소재들이 식물체 코팅재로서 활용될 수 있음을 시사한다.

LPS로 유도된 RAW 264.7 Cell과 마우스 모델에 대한 넓패(Ishige sinicola) 에탄올 추출물의 항염증 효과 (Anti-inflammatory effects of Ishige sinicola ethanol extract in LPS-induced RAW 264.7 cell and mouse model)

  • 김지혜;김민지;김꽃봉우리;박선희;조광수;김고은;쉬 시아오통;이다혜;박가령;안동현
    • 한국식품저장유통학회지
    • /
    • 제24권8호
    • /
    • pp.1149-1157
    • /
    • 2017
  • 본 연구에서는 넓패 에탄올 추출물의 항염증 효과를 알아보기 위해 RAW 264.7 세포에 LPS로 유도된 염증 반응 in vitro 및 in vivo 실험을 실시하였다. RAW 264.7 세포에 LPS와 함께 세포를 배양하였다. 먼저 MTT assay 실험을 통해 넓패 에탄올 추출물이 모든 농도(0.1, 1, 10, 50, $100{\mu}g/mL$)에서 세포독성을 나타내지 않는 것을 학인 하였다. 또한 모든 농도에서 염증억제 효과를 살펴 본 결과, LPS 처리구는 iNOS, COX-2, NF-${\kappa}B$ 그리고 MAPKs의 발현양을 증가 시켰으나, 넓패 에탄올 추출물의 경우 염증 반응에 관여하는 전사인자인 NF-${\kappa}B$와 MAPKs의 활성을 억제함으로써 항염증 효과를 나타내었다. 마지막으로 넓패 에탄올 추출물의 mast cell의 피부 조직학적 변화를 알아본 결과, control의 경우 진피와 경피의 면적이 확장 되어있고, mast cell의 침윤이 정상 군에 비하여 현저하게 증가함을 알 수 있었다. 반면에 넓패 에탄올 추출물의 경우 대조군에 비해 진피와 경피의 두께가 줄었으며 mast cell의 침윤감소에 효과가 있는 것을 확인하였다. 따라서 모든 결과를 종합하였을 때 넓패 에탄올 추출물이 항염증 치료제 뿐만 아니라 더 나아가 항염증에 유용한 기능성 식품소재로써 가치가 높다고 사료된다.

한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발 (DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA)

  • 박만배
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 1995년도 제27회 학술발표회
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF