• Title/Summary/Keyword: Alpha-actin

Search Result 187, Processing Time 0.024 seconds

Inhibition of Chondrogenesis by Cytochalasin D in High Density Micromass Culture of Chick Mesenchymal Cells: Its Effects on Expression of $\alpha$-Smooth Muscle Actin and P-cadherin

  • Yoo, Jeong-Ah;Park, Su-Jung;Kang, Shin-Sung;Park, Tae-Kyu
    • Animal cells and systems
    • /
    • v.5 no.3
    • /
    • pp.205-209
    • /
    • 2001
  • Mesenchymal cells from the leg buds of stage 24-chick embryos differentiated into chondrocytes when plated at high density. Treatment of high density micromass culture of chick mesenchymal cells with cytochalasin D(CD, 2 $\mu$M for 24 h) resulted in inhibition of chondrogenesis. CD treatment was found to affect the expression of the contractile protein $\alpha$-smooth muscle actin ($\alpha$-SM actin). In control cultures, $\alpha$-SM actin uniformly expressed from culture day 2, but the CD-treated cells induced expression of $\alpha$-SM actin from the first day of culture followed by a continuous increase. Expression of pan-cadherin (P-cadherin) decreased as chondrogenesis proceeded in the control culture, whereas the CD-treated cells showed sustained expression. These results propose a close connection of chondrogenic differentiation with expression of $\alpha$-SM actin and P-cadherin.

  • PDF

Effect of 'Sexiang Shuhuo Jing' for CPK, LDH Activities and Skeletal Muscle ${\alpha}-actin$ mRNA Expression after Skeletal Muscle in Rats (골격근 손상에 대한 '사향서활정'(麝香舒活精)치료의 혈청 CK, LDH활성도 및 골격근 ${\alpha}-actin$ mRNA 발현 변화의 관찰)

  • Kim, Jin-Hang;Song, Je-Ho
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.4
    • /
    • pp.992-996
    • /
    • 2006
  • The study examined clinical effect of the 'Sexiang Shuhuo Jing' on serum CK and LDH activities and skeletal muscle ${\alpha}-actin$ mRNA expression concentration 140days after skeletal muscle injury in rats. The clinical research consisted of observing and measuring the serum CK, LDH activities and skeletal muscle ${\alpha}-actin$ mRNA expression, at the time of injury and during recovery. All experimental data were analyzed by repeated measurement with ANOVA on of SPSS(11.5v), accepting level for all significances was above ${\alpha}\;=.05.$ The results were as follows: That skeletal muscle injury in rats there existed a substantial increase serum CK, LDH activities and expression of skeletal muscle ${\alpha}-actin$ mRNA And Sexiang Shuhuo Jing treatment group's serum CK, LDH activities lower and faster recovery than control group. The 1 st day after skeletal muscle injury, Sexiang Shuhuo Jing treatment group's skeletal muscle ${\alpha}-actin$ mRNA expression was much more higher than control group, after 2 day's faster recovery normal level than control group. There existed a substantial increase again serum CK, LDH activities and skeletal muscle ${\alpha}-actin$ mRNA expression 3rd days after injury in control group. But in Sexiang Shuhuo Jing treatment group's can't be found that.

The Carboxyl Terminal Amino Acid Residues Glutamine276-Threonine277 Are Important for Actin Affinity of the Unacetylated Smooth ${\alpha}$-Tropomyosin

  • Cho, Young-Joon
    • BMB Reports
    • /
    • v.33 no.6
    • /
    • pp.531-536
    • /
    • 2000
  • Tropomyosin (TM) is an important actin binding protein involved in regulation of muscle contraction. Unacetylated striated tropomyosin failed to bind to actin whereas unacetylated smooth tropomyosin bound well to actin. It has been demonstrated that high actin affinity of unacetylated ${\alpha}-tropomyosin$ was ascribed to the carboxyl terminal amino acid residues. In order to define the role of the carboxyl terminal residues of tropomyosin molecule on actin binding, two mutant tropomyosins were constructed. TM11 is identical to the striated tropomyosin except that the carboxyl terminal last three amino acids was replaced with $^{282}NNM^{284}$ whereas in TM14 $^{276}HA^{277}$ was substituted with smooth specific $^{276}QT^{277}$. TM11 and TM14 were overproduced in Escherichia coli and analyzed for actin affinity. The apparent binding constants (Kapp) of unacetylated tropomyosins were $2.2{\times}10^6M^{-1}$ for sm9, $1.03{\times}10^6M^{-1}$ for TM14, $0.19{\times}10^6M^{-1}$ for TM11, $>0.1{\times}10^6M^{-1}$ for striated, respectively. This result indicated that higher actin affinity of the unacetylated smooth tropomyosin was primarily attributed to the presence of QT residues in the smooth sequence. In case of the Ala-Ser (AS) dipeptide extension of the amino terminus of tropomyosin, Kapp were $21.1{\times}10^6M^{-1}$ for AS-sm9, $8.0{\times}10^6M^{-1}$ for AS-11, $4.7{\times}10^6M^{-1}$ for AS-14, $3.8{\times}10^6M^{-1}$ for AS-striated. AS-TM11 showed considerably higher actin affinity than AS-TM14, implying that interaction of Ala-Ser of the amino terminus with the carboxyl terminal residues. Since Kapp of AS-TM11 was significantly lower than that of AS-sm9, the presence of QT might be required for restoration of high actin affinity of the smooth ${\alpha}-tropomyosin$. These results suggested that the carboxyl terminal amino acid residues Glutamine275-Threonine276 are important for actin affinity of the recombinant smooth ${\alpha}-tropomyosin$, particularly of unacetylated smooth ${\alpha}-tropomyosin$.

  • PDF

Isolation and Molecular Phylogeny of Three Muscle Actin Isoforms of an Endangered Freshwater Fish Species Hemibarbus mylodon (Cypriniformes; Cyprinidae)

  • Kim, Keun-Yong;Nam, Yoon-Kwon
    • Journal of Aquaculture
    • /
    • v.22 no.1
    • /
    • pp.83-91
    • /
    • 2009
  • The Korean doty barbel Hemibarbus mylodon (Cypriniformes; Cyprinidae) is a critically endangered freshwater fish species mainly because of its natural habitat degradation. Three full-length complementary DNA (cDNA) clones representing different muscle actin isoforms were isolated and characterized. The three muscle actin isoforms were 1,294-1,601 bp long with the identical open reading frames of 1,134 bp with the deduced amino acid residues of 377. They showed 83.9-87.2% identities in the coding nucleotide level and 96.8-98.1% identities in the amino acid level. Phylogenetic analysis with the coding nucleotide sequences revealed that three muscle actin isoforms of H. mylodon formed strongly supported monophyletic groups with one of cypriniform skeletal $\alpha$-actin (acta1), cypriniform aortic $\alpha$-actins (acta2), and uncharacterized Danio rerio muscle actin isoform/Salmo trutta slow muscle actin (a novel muscle actin type). Our phylogenetic tree further suggested that cypriniform acta2 only showed the orthologous relationship to tetrapod acta2. Other multiple actin isoforms from diverse teleostean taxa were however clustered to no tetrapod orthologs, i.e., acta1, cardiac $\alpha$-actins (aetc1), acta2, and enteric $\gamma$-actin (actg2). This result strongly suggested that teleostean muscle actins have experienced different and complicated evolutionary history in comparison to mammalian counterparts.

Localization of cytoskeletal proteins in Cryptosporidium parvum using double immunogold labeling (이중면역황금표지법을 이용한 작은와포자충의 세포골격 단백질 분포 관찰)

  • 유재란;이순형
    • Parasites, Hosts and Diseases
    • /
    • v.34 no.4
    • /
    • pp.215-224
    • /
    • 1996
  • actin and some actin binding proteins such as tropomyosin, α-actinin and troponin T were localized by simultaneous double immunogold labeling in several developmental stages of Cryptosporidium parvum. All of the observed developmental stages have many paricles of tropomyosin and actin around pellicle and cytoplasm. Tropomyosin was labeled much more than the actin when these two proteins were labeled simultaneously. And α-actinin was labeled mostly in the pellicle, but troponin T labeling weas very rarely observed. From this study it was suggested that tropomyosin seemed to be one of the major proteins of C. parvum, so it must be playing important roles in C. parvum.

  • PDF

Glutamine Residue at 276 of smooth muscle α-tropomyosin is primarily responsible for higher actin affinity (평활근 α-트로포마이오신 Gln276잔기의 액틴친화력에 대한 중요성)

  • Jung, Sun-Ju;Cho, Young-Joon
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.204-210
    • /
    • 2007
  • Previous reports indicated that the carboxyl terminal residues, glutamine276-threonine277 in particular, were important for actin affinity of the unacetylated smooth ${\alpha}-tropomyosin$. To determine the role of the glutamine and threonine residues in C-terminal region in actin binding, we constructed mutant striated muscle ${\alpha}-tropomyosin$ (TMs), in which these two residues were individually substituted. These mutant tropomyosins, designated TM18 (HT) and TM19 (QA), were overexpressed in E. coli as an either unacetylated form or Ala-Ser. (AS) dipeptide fusion form, and were analyzed F-actin affinity by cosedimentation. Unacetylated TM19 (QA) bound to actin approximately three times stronger than TM18 (HT) and much stronger than ST (HA). AS/TM19 (QA) showed four times stronger, in actin affinity than AS/ST (HA) while AS/TM14 (QT) bound to actin stronger to some extent than AS/TM18 (HT). These results suggested that the presence of Gln residue at 276 be primarily attributed to higher actin affinity of smooth ${\alpha}-tropomyosin$.

Cytoskeletal changes during nuclear and cell division in the freshwater alga Zygnema cruciatum (Chlorophyta, Zygnematales)

  • Yoon, Min-Chul;Han, Jong-Won;Hwang, Mi-Sook;Kim, Gwang-Hoon
    • ALGAE
    • /
    • v.25 no.4
    • /
    • pp.197-204
    • /
    • 2010
  • Cytoskeletal changes were observed during cell division of the green alga Zygnema cruciatum using flourescein isothiocynate (FITC)-conjugated phallacidin for F-actin staining and FITC-anti-$\alpha$-tubulin for microtubule staining. Z. cruciatum was uninucleate with two star-shaped chloroplasts. Nuclear division and cell plate formation occurred prior to chloroplast division. Actin filaments appeared on the chromosome and nuclear surface during prophase, and the F-actin ring appeared as the cleavage furrow developed. FITC-phallacidin revealed that actin filaments were attached to the chromosomes during metaphase. The F-actin ring disappeared at late metaphase. At telophase, FITC-phallacidin staining of actin filaments disappeared. FITC-anti-$\alpha$-tubulin staining revealed that microtubules were arranged beneath the protoplasm during interphase and then localized on the nuclear region at prophase, and that the mitotic spindle was formed during metaphase. The microtubules appeared between dividing chloroplasts. The results indicate that a coordination of actin filaments and microtubules might be necessary for nuclear division and chromosome movement in Z. cruciatum.

Effect of Three Amino Acid Residues at the Carboxyl Terminus in Unacetylated ${\alpha}$-Tropomyosin on Actin Affinity

  • Cho, Young-Joon;Jung, Sun-Ju;Seo, Sang-Min;Suh, Kye-Hong;Yang, Jae-Sub
    • Journal of Life Science
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • In order to determine the role of the carboxyl terminal amino acid residues of unacetylated ${\alpha}$-tropomyosin in actin affinity two mutant tropomyosins were constructed by site-directed mutagenesis. TM16 was identical to the striated tropomyosin except that three amino acids in the carboxyl terminal end were altered to $^{282}TNM^{284}$ while in TM17 $^{282}TSI^{284}$ of the striated was replaced with$^{282}NSM^{284}$. TM16 and TM17 were overproduced in Escherichia coli and analyzed for actin affinity by comparing actin affinities of the striated and TM11 $^{282}NNM^{284}$). The apparent binding constants (Kapp) of unacetylated tropomyosins to actin were $5.1{\times}10^4M^{-1}$ for the striated, $1.1{\times}10^5M^{-1}$ for TM11, $1.09{\times}10^5M^{-1}$ for TM16, and $1.03{\times}10^5M^{-1}$ for TM17, respectively. Since the actin affinities of TM11, TM16, and TM17 were very similar, this result suggested that amino acid residues 282 and 283 were insignificant for acting affinity of unacetylated $\alpha$-tropomyosin. However, they all exhibited higher actin affinities than that of the striated, suggesting that Met residue at the carboxyl terminus of unacetylated smooth tropomyosin was rather important for actin affinity, presumably due to the nucleophilic nature of sulfur atom in Met residue.

  • PDF

Actin Affinities of Recombinant α-Tropomyosins That Residues 276 or 277 in the Carboxyl Terminal Region are Individually Substituted to a Cysteine Residue (α-트로포마이오신의 276 또는 277 아미노산 잔기가 단일 시스테인 잔기로 치환된 돌연변이 트로포마이오신의 액틴친화력)

  • Kim, Don-Kyu;Cho, Young-Joon
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.573-580
    • /
    • 2009
  • It has been previously reported that the carboxyl terminal residues 276 and 277 of ${\alpha}$-tropomyosin are important for actin affinity. In order to investigate actin affinities of these two residues of skeletal (HA) and smooth (QT) muscle ${\alpha}$-tropomyosins, a series of mutant tropomyosins were constructed in which residues at either 276 or 277 were individually replaced with a cysteine residue for chemical modification. These mutants were overexpressed in E. coli as unacetylated and Ala-Ser (AS) dipeptide fusion forms. While actin affinities of unacetylated tropomyosins were considerably low, those of AS/TMs were remarkably higher than those of corresponding unacetylated tropomyosins. However, actin affinities of AS/TM24 (QC) and AS/TM29 (HC) were dramatically lower than those of other AS/TMs and were close to those of unacetylated tropomyosins. In addition, actin affinities of unacetylated TM24 (QC) and TM29 (HC) failed to be restored in the presence of troponin, unlike unacetylated TM10 (HA) and TM23 (CA). These results indicated that the presence of a cysteine residue at 277 caused a drastic decrease in actin affinity, and also that the residue 277 is important for actin affinity of ${\alpha}$-tropomyosin. Since TM23 (CA) showed high actin affinity, it may serve as a valuable tool for chemical modification studies for investigating the interaction of the carboxyl terminal residues of ${\alpha}$-tropomyosin with actin and/or troponin.

Ginseng total saponin modulates the changes of ${\alpha}$-actinin-4 in podocytes induced by diabetic conditions

  • Ha, Tae-Sun;Choi, Ji-Young;Park, Hye-Young;Nam, Ja-Ae;Seo, Su-Bin
    • Journal of Ginseng Research
    • /
    • v.38 no.4
    • /
    • pp.233-238
    • /
    • 2014
  • Background: The actin cytoskeleton in podocytes is essential for the maintenance of its normal structure and function. Its disruption is a feature of podocyte foot-process effacement and is associated with proteinuria. ${\alpha}$-Actinin-4 in podocytes serves as a linker protein binding the actin filaments of the cytoskeleton. Methods: To investigate the effect of ginseng total saponin (GTS) on the pathological changes of podocyte ${\alpha}$-actinin-4 induced by diabetic conditions, we cultured mouse podocytes under normal glucose (5mM) or high glucose (HG, 30mM) conditions, with or without the addition of advanced glycosylation end products (AGE), and treated with GTS. Results: In confocal imaging, ${\alpha}$-actinin-4 colocalized with the ends of F-actin fibers in cytoplasm, but diabetic conditions disrupted F-actin fibers and concentrated ${\alpha}$-actinin-4 molecules at the peripheral cytoplasm. GTS upregulated ${\alpha}$-actinin protein in a time- and dose-dependent manner, and suppressed the receptor for AGE levels in western blotting. Diabetic conditions, including HG, AGE, and both together, decreased cellular ${\alpha}$-actinin-4 protein levels at 24 h and 48 h. Such quantitative and qualitative changes of ${\alpha}$-actinin-4 protein induced by diabetic conditions were mitigated by GTS. Conclusion: These findings imply that both HG and AGE have an influence on the distribution and amount of ${\alpha}$-actinin-4 in podocytes that can be recovered by GTS.