• Title/Summary/Keyword: Alpha angle

Search Result 365, Processing Time 0.025 seconds

Study on the Travel and Tractive Characteristics of The Two-Wheel Tractor on the General Slope Ground (II)-Dynamic Side-overturn of the Tiller-trailer System- (동력경운기의 경사지견인 및 주행특성에 관한 연구 (II)-동력경운기-트레일러계의 욍골동 및 동횡전도한계)

  • 송현갑;정창주
    • Journal of Biosystems Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-19
    • /
    • 1978
  • Power tiller is a major unit of agricultural machinery being used on farms in Korea. About 180.000 units are introduced by 1977 and the demand for power tiller is continuously increasing as the farm mechanization progress. Major farming operations done by power tiller are the tillage, pumping, spraying, threshing, and hauling by exchanging the corresponding implements. In addition to their use on a relatively mild slope ground at present, it is also expected that many of power tillers could be operated on much inclined land to be developed by upland enlargement programmed. Therefore, research should be undertaken to solve many problems related to an effective untilization of power tillers on slope ground. The major objective of this study was to find out the travelling and tractive characteristics of power tillers being operated on general slope ground.In order to find out the critical travelling velocity and stability limit of slope ground for the side sliding and the dynamic side overturn of the tiller and tiller-trailer system, the mathematical model was developed based on a simplified physical model. The results analyzed through the model may be summarized as follows; (1) In case of no collision with an obstacle on ground, the equation of the dynamic side overturn developed was: $$\sum_n^{i=1}W_ia_s(cos\alpha cos\phi-{\frac {C_1V^2sin\phi}{gRcos\beta})-I_{AB}\frac {v^2}{Rr}}=0$$ In case of collision with an obstacle on ground, the equation was: $$\sum_n^{i=1}W_ia_s\{cos\alpha(1-sin\phi_1)-{\frac {C_1V^2sin\phi}{gRcos\beta}\}-\frac {1}{2}I_{TP} \( {\frac {2kV_2} {d_1+d_2}\)-I_{AB}{\frac{V^2}{Rr}} \( \frac {\pi}{2}-\frac {\pi}{180}\phi_2 \} = 0 $$ (2) As the angle of steering direction was increased, the critical travelling veloc\ulcornerities of side sliding and dynamic side overturn were decreased. (3) The critical travelling velocity was influenced by both the side slope angle .and the direct angle. In case of no collision with an obstacle, the critical velocity $V_c$ was 2.76-4.83m/sec at $\alpha=0^\circ$, $\beta=20^\circ$ ; and in case of collision with an obstacle, the critical velocity $V_{cc}$ was 1.39-1.5m/sec at $\alpha=0^\circ$, $\beta=20^\circ$ (4) In case of no collision with an obstacle, the dynamic side overturn was stimu\ulcornerlated by the carrying load but in case of collision with an obstacle, the danger of the dynamic side overturn was decreased by the carrying load. (5) When the system travels downward with the first set of high speed the limit {)f slope angle of side sliding was $\beta=5^\circ-10^\circ$ and when travels upward with the first set of high speed, the limit of angle of side sliding was $\beta=10^\circ-17.4^\circ$ (6) In case of running downward with the first set of high speed and collision with an obstacle, the limit of slope angle of the dynamic side overturn was = $12^\circ-17^\circ$ and in case of running upward with the first set of high speed and collision <>f upper wheels with an obstacle, the limit of slope angle of dynamic side overturn collision of upper wheels against an obstacle was $\beta=22^\circ-33^\circ$ at $\alpha=0^\circ -17.4^\circ$, respectively. (7) In case of running up and downward with the first set of high speed and no collision with an obstacle, the limit of slope angle of dynamic side overturn was $\beta=30^\circ-35^\circ$ (8) When the power tiller without implement attached travels up and down on the general slope ground with first set of high speed, the limit of slope angle of dynamic side overturn was $\beta=32^\circ-39^\circ$ in case of no collision with an obstacle, and $\beta=11^\circ-22^\circ$ in case of collision with an obstacle, respectively.

  • PDF

Development of Optical Sighting System for Moving Target Tracking

  • Jeung, Bo-Sun;Lim, Sung-Soo;Lee, Dong-Hee
    • Current Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.154-163
    • /
    • 2019
  • In this study, we developed an optical sighting system capable of shooting at a long-distance target by operating a digital gyro mirror composed of a gyro sensor and an FSM. The optical sighting system consists of a reticle part, a digital gyro mirror (FSM), a parallax correction lens, a reticle-ray reflection mirror, and a partial reflection window. In order to obtain the optimal volume and to calculate the leading angle range according to the driving angle of the FSM, a calculation program using Euler rotation angles and a three-dimensional reflection matrix was developed. With this program we have confirmed that the horizontal leading angle of the developed optical sighting system can be implemented under about ${\pm}8^{\circ}$ for the maximum horizontal driving angle (${\beta}={\pm}12.5^{\circ}$) of the current FSM. Also, if the ${\beta}$ horizontal driving angle of the FSM is under about ${\pm}15.5^{\circ}$, it can be confirmed that the horizontal direction leading angle can be under ${\pm}10.0^{\circ}$. If diagonal leading angles are allowed, we confirmed that we can achieve a diagonal leading angle of ${\pm}10.0^{\circ}$ with a vertical driving angle ${\alpha}$ of ${\pm}7.1^{\circ}$ and horizontal driving angle ${\beta}$ of ${\pm}12.5^{\circ}$.

Improvement of Rotary Tine for Barley Seeder Attached to Rotary Tiller (로우터리 맥류파종기 경운날의 개량시험)

  • 김성래;김문규;김기대;허윤근
    • Journal of Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-23
    • /
    • 1979
  • The use of barley seeder attached to rotary tiller in the rural area has a significant meaning not only for the solution of labor peak season, but also for the increase of land utilization efficiency. The facts that presently being used barley seeders are all based on the mechanical principles of the reverse rotation, center drive and are all using forward rotating tine, which is used to be easily and heavily worn out when it rotates reversely, raise problem of recommending them to rural area in Korea. Therefore, the main objective of the study was to develop new type of rotary tine attachable to barley seeders. To attain the objective the following approaches were applied. (1) The kinematic analysis of reverse rotating barley seeders. (2) The studies on the soil bin and artificial soil. (3) The comparative experiment on the power requirement of prototype tine. The results obtained from the studies are summarized as follow: 1. The kinematic analysis of barley seeder attached to rotary tiller: The following results were obtained from the kinematic analysis for deriving general formulae of the motion and velocity characterizing the rotary tine of barley seeders presently being used by farmers. a) The position vector (P) of edge point (P) in the rotary tine of reverse rotating, center drive was obtained by the following formula. $$P=(vt+Rcos wt)i+Rsin wt j+ \{ Rcos \theta r sin \alpha cos (wt- \beta +\theta r) +Rsin \theta r sin \alpha sin (wt-\beta + \theta r) \} lk $$ b) The velocity of edge point $(P^')$ of reverse rotating, center drive rotary tine was obtained by the following formula. $$(P^')=(V-wR sin wt)i+(w\cdot Rcoswt)j + \{ -w\cdot Rcos \theta r\cdot sin \alpha \cdot sin (wt-\beta +\theta r) + w\cdot Rsin \theta r\cdot sin \alpha \cdot cos (wt- \beta + \theta r \} k $$ c) In order to reduce the power requirement of rotary tine, the angle between holder and edge point was desired to be reduced. d) In order to reduce the power requirement, the edge point of rotary tine should be moved from the angle at the begining of cutting to center line of machine, and the additional cutting width should be also reduced. 2. The studies on the soil bin and artificial soil: In order to measure the power requirement of various cutting tines under the same physical condition of soil, the indoor experiments Viere conducted by filling soil bin with artificially made soil similar to the common paddy soil and the results were as follows: a) When the rolling frequencies$(x)$ of the artificial soil were increased, the densIty$(Y)$ was also increased as follows: $$y=1.073200 +0.070780x - 0.002263x^2 (g/cm^3)$$ b) The absolute hardness $(Y)$ of soil had following relationship with the rolling frequencies$(x)$ and were increased as the rolling frequencies were increased. $$Y=37.74 - \frac {0.64 + 0.17x-0. 0054x^2} {(3.36-0.17x + 0.0054x^2)^3} (kg/cm^3)$$ c) The density of soil had significant effect on the cohesion and angle of internal friction of soil. For instance, the soil with density of 1.6 to 1.75 had equivalent density of sandy loam soil with 29.5% of natural soil moisture content. d) The coefficient of kinetiic friction of iron plate on artificial soil was 0.31 to 0.41 and was comparable with that of the natural soil. e) When the pulling speed of soil bin was the 2nd forward speed of power tiller, the rpm of driving shaft of rotary was similar to that of power tiller, soil bin apparatus is indicating the good indoor tester. 3. The comparative experiment on the power requirement of prototype tine of reverse rotating rotary: According to the preliminary test of rotary tine developed with various degrees of angle between holder and edge pcint due to the kinematic analysis, comparative test between prototype rotary tine with $30 ^\circ $ and $10 ^\circ$ of it and presently being used rotary tine was carried out 2nd the results were as follows: a) The total cutting torque was low when the angle between holder and edge point was reduced. b) $\theta r$ (angle between holder and edge point) of rotary tine seemed to be one: of the factors maximizing the increase of torque. c) As the angle between holder and edge point ($\theta r$) of rotary tine was $30 ^\circ $ rather than $45 ^\circ $, the angle of rotation during cutting soil was reduced and the total cutting torque was accordingly reduced about 10%, and the reduction efficiency of total cutting torque was low when the angle between holder and edge point ($\theta r$) of rotary tine was $10 ^\circ $, which indicates that the proper angle between holder and edge point of rotary tine should be larger than $10 ^\circ $ and smaller than $30 ^\circ $ . From above results, it could be concluded that the use of the prototype rotary tine which reduced the angle between holder and edge point to $30 ^\circ $, insted of $45 ^\circ $, is disirable not only decreasing the power requirements, but also increasing the durabie hour of it. Also forward researches are needed, WIlich determine the optimum tilted angle of rotary brocket, and rearrangement of the rotary tine on the rotary boss.

  • PDF

A Novel Approved Mathematical Equation for Lightning Protection Angle

  • Singhasathein, Arnon;Rungseevijitprapa, Weerapun;Pruksanubal, Aphibal
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.1021-1029
    • /
    • 2018
  • During the past few decades, the lightning protection angle (${\alpha}$) has been proposed through several technical matters, namely graphical technique, numerical data and mathematical equation respectively. Nevertheless, these techniques are very complicated, and are difficult to utilize because they also contain several constraints practically. Hence, this paper proposes a novel equation of the lightning protection angle, which is a simple correlation, concise and easy to be implemented. Furthermore, the reliable result of this equation can confirm accuracy through comparative analysis with all previous techniques. As a result, these solutions are altogether equivalent. This novel equation can analyze the lightning protection angle of the vertical air termination system installed at the vertex of the royal pagoda in a Khema-pirataram temple which is at high risk due to lightning flashes.

The molecular structure of (+) -6-methoxy-.alpha. 1-2-naphtha-leneacetic acid determined by X-Ray method

  • Kim, Yang-Bae;Song, Hyun-June
    • Archives of Pharmacal Research
    • /
    • v.7 no.2
    • /
    • pp.137-139
    • /
    • 1984
  • The molecular structure of (+)-6-Me hoxy-.alpha.-methyl-2-naphthaleneacetic acid (Naproxen), $C_{14}H_{14}O_{ 3}$, was determined by X-Ray diffraction technique. Naproxen crystallized in $P2_1$ with two molecules on the unit cell of dimensions a = 7.855, b = 5.783, c = 13.347$\AA$ and $\beta$ = $93.9^{\circ}$

  • PDF

COEFFICIENT DISCS AND GENERALIZED CENTRAL FUNCTIONS FOR THE CLASS OF CONCAVE SCHLICHT FUNCTIONS

  • Bhowmik, Bappaditya;Wirths, Karl-Joachim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.1551-1559
    • /
    • 2014
  • We consider functions that map the open unit disc conformally onto the complement of an unbounded convex set with opening angle ${\pi}{\alpha}$, ${\alpha}{\in}(1,2]$, at infinity. We derive the exact interval for the variability of the real Taylor coefficients of these functions and we prove that the corresponding complex Taylor coefficients of such functions are contained in certain discs lying in the right half plane. In addition, we also determine generalized central functions for the aforesaid class of functions.

Comparing the Stability of Geometrically rigid Tricyclopropyl Carbinyl Cations by $^{19}$F NMR Spectroscopy

  • Shin, Jung-Hyu;Kim, Kyong-Tae;Shin, Hun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.3
    • /
    • pp.144-145
    • /
    • 1987
  • The relative stability as function of geometry in the rigid tricyclopropylcarbinyl cations with varied bond angle (${\alpha}$) between the plane of cyclopropane ring and the bond connecting cyclopropane ring to cationic carbon was examined by $^{19}F$ nmr spectroscopy. 7-p-Fluorophenyltricyclo[2.2.2.$0^{2,6}$]octan-7-yl(4) and 8-p-fluorophenyltricyclo[3.2.2.$0^{2,7}$]nonan-8-yl cation (8) were generated from corresponding tertiary alcohols under stable ion conditions, and their $^{19}F$ chemical shifts were compared with those of model compounds such as 7-nortricyclyl cation (3) and tricyclo[3.3.1.$0^{2,7}$]octan-8-yl cation (7). Consequently, it is concluded that the varied orientation of bond angle (${\alpha}$) within in the bisected conformation does not affect degree of the charge delocalization into cyclopropane ring.

DSP BASED CONTROL OF HIGH POWER STATIC VAR COMPENSATOR USING NOVEL VECTOR PRODUCT PHASE LOCKED LOOP (새로운 벡터적 PLL를 이용한 대용량 무효전력 보상기(SVC)의 DSP 제어)

  • Jung, Gu-H.;Cho, Guk-C.;Chae, Cyun;Cho, Gyu-H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.262-264
    • /
    • 1996
  • This paper presents a new dual loop control using novel vector phase locked loop(VP-PLL) for a high power static var compensator(SVC) with three-level GTO voltage source inverter(VSI). Through circuit DQ-transformation, a simple dq-axis equivalent circuit is obtained. From this, DC analysis is carried out to obtain maximum controllable phase angle ${\alpha}_{max}$ per unit current between the three phase source and the switching function of inverter, and AC open-loop transfer function is given. Because ${\alpha}_{max}$ becomes small in high power SVC, this paper proposes VP-PLL for more accurate $\alpha$-control. As a result, the overall control loop has dual loop structure, which consists of inner VP-PLL for synchronizing the phase angle with source and outer Q-loop for compensating reactive power of load. Finally, the validity of the proposed control method is verified through the experimental results.

  • PDF

Design of the Zero Location for Minimizing the Peak Overshoot of Second Order Discrete Systems (이차 이산시스템의 Peak Overshoot을 최소화하기 위한 영점의 위치 설계)

  • Lee, Jas-Seok;Chung, Tae-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.512-514
    • /
    • 1999
  • The damping ratio $\zeta$ of a continuous 2nd order response which passes all the points of the discrete response of a 2nd order discrete system(envelope curve) is a function of only the location of the closed-loop pole and ie not at all related to the location of the zero. And the peak overshoot of the envelope curve is uniquely specified by the damping ratio $\zeta$, which is a function of solely the closed-loop pole location, and the angle $\alpha$ which is determined by the relative location of the zero with respect to the closed-loop complex pole. Therefore, if the zero slides on the real axis with the closed-loop complex poles being fixed, then the angle $\alpha$ changes however the damping ratio $\zeta$ does not. Accordingly, when the closed-loop system poles are fixed, the peak overshoot is function of $\alpha$ or the system zero. In this thesis the effects of the relative location of the zero on the system performance of a second order discrete system is studied.

  • PDF

Features of the flow over a finite length square prism on a wall at various incidence angles

  • Sohankar, A.;Esfeh, M. Kazemi;Pourjafari, H.;Alam, Md. Mahbub;Wang, Longjun
    • Wind and Structures
    • /
    • v.26 no.5
    • /
    • pp.317-329
    • /
    • 2018
  • Wake characteristics of the flow over a finite square prism at different incidence angles were experimentally investigated using an open-loop wind tunnel. A finite square prism with a width D = 15 mm and a height H = 7D was vertically mounted on a horizontal flat plate. The Reynolds number was varied from $6.5{\times}10^3$ to $28.5{\times}10^3$ and the incidence angle ${\alpha}$ was changed from $0^{\circ}$ to $45^{\circ}$. The ratio of boundary layer thickness to the prism height was about ${\delta}/H=7%$. The time-averaged velocity, turbulence intensity and the vortex shedding frequency were obtained through a single-component hotwire probe. Power spectrum of the streamwise velocity fluctuations revealed that the tip and base vortices shed at the same frequency as that ofspanwise vortices. Furthermore, the results showed that the critical incidence angle corresponding to the maximum Strouhal number and minimum wake width occurs at ${\alpha}_{cr}=15^{\circ}$ which is equal to that reported for an infinite prism. There is a reduction in the size of the wake region along the height of the prism when moving away from the ground plane towards the free end.