• Title/Summary/Keyword: Alpha Activity

Search Result 5,366, Processing Time 0.031 seconds

Determination of Branched-Chain α-Keto Acid Dehydrogenase Activity in Rat Tissues

  • Kim, Hyun-Sook;Johnson, Wayne A.
    • BMB Reports
    • /
    • v.28 no.1
    • /
    • pp.12-16
    • /
    • 1995
  • The branched-chain ${\alpha}$-keto acid dehydrogenase (BCKAD) complex is a rate limiting enzyme which catalyzes the oxidative decarboxylation of branched-chain ${\alpha}$-keto acids. Numerous studies have suggested that BCKAD is subject to covalent modification in vitro via phosphorylation and dephosphorylation, which are catalyzed by a specific kinase and phosphatase, respectively. The biggest difficulty in the assay of BCKAD activity is to arrest the interconversion between the active and inactive forms. BCKAD activity was determined from fresh rat heart and liver tissues using homogenizing and assay buffers containing inhibitors of phosphatase and kinase. The results suggest that a radiochemical assay using ${\alpha}$-keto[1-$^{14}C$]-isovalerate as a substrate for the enzyme can be applied as a reliable method to determine in vitro enzyme activity with arrested interconversion between the active and inactive forms of the BCKAD complex.

  • PDF

Bioconversion of progesterone by immobilized aspergillus phoenicis (고정화된 aspergillus phoenicis를 이용한 progesterone 전환)

  • 박희은;김말남
    • Korean Journal of Microbiology
    • /
    • v.27 no.1
    • /
    • pp.70-76
    • /
    • 1989
  • Progestrone bioconversion by immobilized Aspergillus phoenicis was studied. Progesterone was converted into 11$\alpha$-hydroxyprogesterone and 3-minor byproducts. Whole cells of A. phoenicis were immobillized by enreappment with calcium-alginate, K-carrageenan, or polyacrylamide. Of these materials tested, cell immobilized in $Ca^{2+}$ -alginate gels showed the highest activity for 11$\alpha$-hydroxylation of progesterone. In the case of mycelia immobilized in $Ca^{2+}$-alginate, futher progressing hydroxylation of 11$\alpha$-hydroxyprogesterone was greatly reduced. Spores of A. phoenicis which were immobillized with $Ca^{2+}$-alginate and germinatedin situ for 25 hours showed higher 11$\alpha$-hydroxylase activity than those of entrapped whole mycelia and maintained initial enzyme activity for all 8 times of repeated use. After 16 times of reuse, the activity was declined 30% or more. When culture media and $Zn^{2+}$ were introduced into the reaction media, the activity of the immobilized mycelia which had been lowered due to many times of reuse was effectively reactivated.

  • PDF

Inhibitory Effects of Quinoline Isolated from Ruta chalepensis and Its Structurally Related Derivatives against α-Amylase or α-Glucosidase

  • Park, Jun-Hwan;Lee, Hoi-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.1
    • /
    • pp.5-8
    • /
    • 2015
  • This study was to isolate an active component of the chloroform fraction from the methanol extract of Ruta chalepensis leaves and to measure inhibitory effects against ${\alpha}$-glucosidase or ${\alpha}$-amylase. The inhibitory compound of R. chalepensis leaves was isolated using chromatographic methods and identified as quinoline. Quinoline and its structurally related derivatives were tested for their inhibitory activities by evaluating the $IC_{50}$ values against ${\alpha}$-amylase or ${\alpha}$-glucosidase and were compared with that of acarbose. Based on the $IC_{50}$ values, quinazoline exhibited the greatest inhibitory activity ($20.5{\mu}g/mL$), followed by acarbose ($66.5{\mu}g/mL$), and quinoline ($80.3{\mu}g/mL$) against ${\alpha}$-glucosidase. In case of ${\alpha}$-amylase, quinazoline had potent inhibitory activity, followed by quinoline ($179.5{\mu}g/mL$) and acarbose ($180.6{\mu}g/mL$). These results indicate that R. chalepensis extract, quinoline, and quinazoline could be useful for inhibiting ${\alpha}$-glucosidase or ${\alpha}$-amylase.

Specific Gene Silencing by Single Stranded Large Circular Antisense Molecules

  • Park, Jong-Gu
    • Biomedical Science Letters
    • /
    • v.10 no.2
    • /
    • pp.65-73
    • /
    • 2004
  • I report that single-stranded antisense as a part of large circular (LC-) genomic DNA of recombinant M13 phage exhibits enhanced stability, sequence specific antisense activity, and no need for target site search. A cDNA fragment (708 bp) of rat TNF-$\alpha$ was inserted into a phagemid vector, and TNF-$\alpha$ antisense molecules (TNF$\alpha$-LCAS) were produced as single-stranded circular DNA. When introduced into a rat monocyte/macrophage cell line, WRT7/P2, TNF$\alpha$-LCAS was able to ablate LPS-induced TNF-$\alpha$ mRNA to completion. The antisense effect of TNF$\alpha$-LCAS was shown to be sequence-specific because expressions of three control genes ($\beta$-actin, GAPDH and IL-1$\beta$) were not significantly altered by the antisense treatment. Further, TNF$\alpha$-LCAS was found to be highly efficacious as only 0.1 $\mu$g (0.24 nM) of TNF$\alpha$-LCAS was sufficient to block TNF-$\alpha$ expression in 1$\times10^5$ WRT7/P2 cells. I have also observed specific antisense activity in reduction of NF-$\kappa$B gene expression. The results suggest that an antisense sequence as a part of single-stranded circular genomic DNA has a specific antisense activity.

  • PDF

Inhibitory Effects of Proanthocyanidin Extracted from Distylium racemosum on ${\alpha}-Amylase$ and ${\alpha}-Glucosidase$ Activities (조록나무 Proanthocyanidin의 ${\alpha}-Amylase$${\alpha}-Glucosidase$에 대한 저해 효과)

  • Ahn, Jin-Kwon;Park, Young-Ki;Park, So-Young;Kim, Yong-Mu;Rhee, Hae-Ik;Lee, Wi-Young
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.4 s.139
    • /
    • pp.271-275
    • /
    • 2004
  • Distylium racemosum Sieb. Et Zucc contains some compounds inhibit -amylase activity in experimental conditions. The inhibitory test showed that 50% acetone extracts from the bark and leaves of the plant strongly inhibited salivary -amylase activity. Proanthocyanidin(PA) which has strong inhibitory activity was extracted from the leaves by chromatography on Sephadex LH-20. The inhibitory activities and the inhibition kinetics of the PA were studied against three kinds of enzymes: human salivary ${\alpha}-Amylase$ (SAA), pork pancreatin ${\alpha}-Amylase$ (PAA) and yeast ${\alpha}-Glucosidase$ (AG). Then the activities of PA against SAA, PAA and AG were compared with those of acarbose, a commercial agent. The inhibitory activities of PA were stronger than those of acarbose. Inhibition kinetics of the PA showed competitive inhibition for SAA and PAA, and non competitive inhibition for GA.

Screening and Classification of Actinomycetes Producing $\alpha$-Amylase Inhibitors and the Isolation, their Kinetic Studies of $\alpha$-Amylase Inhibitors ($\alpha$-Amylase 저해제 생산 방선균의 선별과 분류 및 $\alpha$-Amylase저해제의 분리와 Kinetics 연구)

  • 김제학;김정우;김하원;심미자;최응칠;김병각
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.3
    • /
    • pp.223-232
    • /
    • 1985
  • To find microorganisms of producing $\alpha$-amylase inhibitors, actinomycetes were isolated from soil samples that were collected at different locations in Korea and screened for enzyme inhibitory activity. A strain of these microbes had a high inhibitory activity and was identified as one of the genus Streptomyces by morphological, biochemical and physiological studies according to the methods of the International Streptomyces Project (ISP). The medium used consisted of 3 % corn starch, 0.2% yeast extract and 0.8% peptone (pH 7.0). When this strain was aerobically cultured in the medium on a rotary shaker, the highest inhibitory activity was obtained after four days. This inhibitor had inhibitory activities on various $\alpha$-amylases and glucoamylase, but not on $\beta$-amylase.

  • PDF

Hypoglycemic Effects of a Medicinal Herb Mixture Prepared through the Traditional Antidiabetic Prescription (당뇨 처방에 근거한 생약재 복합물의 혈당강하 효과)

  • Kim, Jung-Ok;Lee, Gee-Dong
    • Food Science and Preservation
    • /
    • v.18 no.6
    • /
    • pp.923-929
    • /
    • 2011
  • For the purpose of investigating the in vitro antidiabetic activity of a medicinal herb mixture prepared through traditional antidiabetic prescription, the study analyzed the existence of insulin-similar components and examined ${\alpha}$-amylase and ${\alpha}$-glucosidase inhibition activity. As a result of arranging the medicinal herb mixture extracts over the 3T3-L1 fibroblast in the concentration of $10{\mu}g/mL$, which confirmed that it included much of insulin sensitizer components as 151.7% in the differentiation of 3T3-L1 fibroblast. The inhibition activity against ${\alpha}$-amylase of the medicinal herb mixture extracts as hypoglycemic agent were 38.4, 31.5 and 16.6% in the concentration of 10.0, 1.0 and 0.1 mg/mL, respectively. The inhibition activity against ${\alpha}$-glucosidase of the medicinal herb mixture extracts were 81.3, 35.8 and 26.7% in the concentration of 10.0, 1.0 and 0.1 mg/mL, respectively. The inhibition activity against ${\alpha}$-glucosidase in the ethyl acetate fractions of the water and 80% ethanol extracts were 66.9% and 55.1%, respectively, the highest levels in the various solvent extracts.

Studies on the Possible Mechanisms of Protective Activity Against $\alpha$-Amanitin Poisoning by Aucubin

  • Lee, Dong-Hee;Cho, In-Goo;Park, Moon-Soo;Kim, Ki-Nam;Chang, Il-Moo;Mar, Woong-chon
    • Archives of Pharmacal Research
    • /
    • v.24 no.1
    • /
    • pp.55-63
    • /
    • 2001
  • Aucubin, an irdoid g1ucoside, was investigated to determine whether it has a stimulating effect on $\alpha$-amanitin excretion in $\alpha$-amanitin intoxicated rats, and whether there is binding activity to calf thymus DNA. High-performance liquid chromatography (HPLC) analysis of $\alpha$-amanitin in rat urine allowed quantitative measurement of the $\alpha$-amanitin concentration with a detection limit of 50${mu}g/ml$. In this system, a group treated with both $\alpha$-amanitin and aucubin showed that o(-amanitin was excreted about 1.4 times faster than in the $\alpha$-amanitin only treated group. Our previous results showed that the toxicity of $\alpha$-amanitin is due to specific inhibition of RNA polymerase activity and the resultant blockage of the synthesis of certain RNA species in the nucleus. However, no significant activity change on RNA polymerase from Hep G2 cells was observed when aucubin was treated with $\alpha$-amanitin at any concentration tested. Nevertheless, aucubigenin inhibited both DNA polymerase (IC50, 80.5${mu}g/ml$) and RNA polymerase (IC50, 135.0${mu}g/ml$) from the Hep G2 cells. The potential of both $\alpha$-amanitin and aucubin to interact with DNA were examined by spectrophotometric analysis. $\alpha$-Amanitin showed no significant binding capacity to calf thymus DNA, but aucubin was found to interact with DNA, and the apparent binding constant ($K_{app}$) and apparent number of binding sites per D7A phosphate ($B_{app}$) were 0.45$0.45{\times}$$10^4$ $M^{-1}$ and 1.25, respectively.

  • PDF

Characterization of Extracellular $\alpha$-Galactosidase Produced by Bacillus licheniformis YB-42. ($\alpha$-Galactosidase를 생산하는 Bacillus lichennformis YB-42의 분리와 효소 특성)

  • 김현숙;이경섭;소재호;이미성;최준호;윤기홍
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.2
    • /
    • pp.128-134
    • /
    • 2004
  • A bacterium producing the $\alpha$-galactosidase was isolated from Korean soybean paste. The isolate YB-42 has been identified as Bacillus licheniformis on the basis on its 16S rRNA sequence, morphology and biochemical properties. The $\alpha$-galactosidase activity was detected in both the culture supernatant and the cell extract of B. licheniformis YB-42. The partially purified extracellular $\alpha$-galactosidase was obtained from the culture supernatant by DEAE-Sepharose column and Q-Sepharose column chromatography. The enzyme showed the maximum activity for hydrolysis of para-nitrophenyl-$\alpha$-D-galactopyranoside (pNP-$\alpha$Gal) at pH 6.5 and $45^{\circ}C$. It was able to hydrolyze oligomeric substrates such as melibiose, raffmose and stachyose to liberate galactose residue, indicating that the a-galactosidase of B. licheniformis YB-42 hydrolyzed $\alpha$-1,6 linkage. The hydrolyzing activity of $\alpha$-galactosidase for both pNP-$\alpha$Gal and melibiose was dramatically decreased by galactose. Both glucose and mannose inhibited the activity for pNP-$\alpha$Gal less than galactose.

Fibrinolytic Activity and Chemical Properties of Cordycepin-Enriched Cordyceps militaris JLM 0636 (Cordycepin 고함유 동충하초 수용성 추출물의 이화학적 특성과 혈전 용해활성)

  • Ahn, Hee-Young;Lee, Jae-Hong;Kang, Min-Jeong;Cha, Jae-Young;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.22 no.2
    • /
    • pp.226-231
    • /
    • 2012
  • The effect of cordycepin-enriched Cordyceps militaris JLM 0636 ($CM{\alpha}$) and Cordyceps militaris (CM) on fibrinolytic activity was investigated. The bioactive compounds and nutritional materials such as polyphenolic compounds, flavonoids, glutathione, minerals, and fatty acids were also measured. Concentrations of polyphenol compounds, flavonoids, and glutathione were higher in $CM{\alpha}$ than that in CM. The major minerals of both materials were K, Ca, Mg, and Na. The major fatty acids of both materials were linolenic acid, linoleic acid, oleic acid, and palmitic acid. Fibrinolytic activity was higher in $CM{\alpha}$ than that in CM. These results may provide the basic data to understand the fibrinolytic activity and bioactive compounds of $CM{\alpha}$.