• Title/Summary/Keyword: Alpha Activity

Search Result 5,366, Processing Time 0.03 seconds

Capsaicin, a component of red peppers, stimulates protein kinase CKII activity

  • Rho, Yun-Wha;Bae, Young-Seuk
    • BMB Reports
    • /
    • v.43 no.5
    • /
    • pp.325-329
    • /
    • 2010
  • Protein kinase CKII (CKII), a heterotetramer composed of two catalytic ($\alpha$ or $\alpha$') subunits and two regulatory ($\beta$) subunits, plays a critical role in cell proliferation and anti-apoptosis. Recently, capsaicin was shown to trigger apoptosis. Therefore, we examined the effect of capsaicin on CKII activity. Although capsaicin induced apoptotic death in HeLa cells, CKII activity was increased in the cytosolic fraction of HeLa cells after treatment. Capsaicin did not change the expression of the $CKII{\alpha}$ and $CKII{\beta}$ proteins. Capsaicin stimulated the catalytic activity of recombinant CKII tetramer, but not the $CKII{\alpha}$ subunit. Moreover, capsaicin enhanced the autophosphorylation of $CKII{\alpha}$ and $CKII{\beta}$. Taken together, our data suggest that capsaicin stimulates the phosphotransferase activity of CKII holoenzyme by interacting with the $CKII{\beta}$ subunit.

Cloning of the Entire Gene Encoding the 140-kDa $\alpha$-Amylase of Lactobacillus amylovorus and Expression in Escherichia coli and Lactococcus lactis

  • Jeong, Jong-Jin;Kim, Tea-Youn;Kim, Jeong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.5
    • /
    • pp.293-298
    • /
    • 1997
  • A 4.6-kb HindIII fragment encompassing the complete 140-kDa ${\alpha}$-amylase gene of Lactobacillus amylovorus B 4540 was cloned into pBR322 by the shot gun method. Southern blotting and restriction mapping for the insert were performed. The recombinant 9.0-kb plasmid, pFML1, conferred ${\alpha}$-amylase activity to E. coli and Lactococcus lactis hosts when introduced by electroporation. SDS-PAGE and zymography confirmed the production of 140-kDa ${\alpha}$-amylase and its proteolytic degradation products with enzyme activity in transformants. Total ${\alpha}$-amylase activity of E. coli $DH5{\alpha}$ cells harboring pFML1 was 1.8 units and most activity was detected from cell pellets. Total enzyme activity of L. lactis subsp. lactis MG1363 transformant was five to ten-fold lower than that of E. coli cell but more than half of the activity was detected in the culture supernatant.

  • PDF

Mangiferin inhibits tumor necrosis factor-α-induced matrix metalloproteinase-9 expression and cellular invasion by suppressing nuclear factor-κB activity

  • Dilshara, Matharage Gayani;Kang, Chang-Hee;Choi, Yung Hyun;Kim, Gi-Young
    • BMB Reports
    • /
    • v.48 no.10
    • /
    • pp.559-564
    • /
    • 2015
  • We investigated the effects of mangiferin on the expression and activity of metalloproteinase (MMP)-9 and the invasion of tumor necrosis factor (TNF)-$\alpha$-stimulated human LNCaP prostate carcinoma cells. Reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis showed that mangiferin significantly reversed TNF-$\alpha$-induced mRNA and protein expression of MMP-9 expression. Zymography data confirmed that stimulation of cells with TNF-$\alpha$ significantly increased MMP-9 activity. However, mangiferin substantially reduced the TNF-$\alpha$-induced activity of MMP-9. Additionally, a matrigel invasion assay showed that mangiferin significantly reduced TNF-$\alpha$-induced invasion of LNCaP cells. Compared to untreated controls, TNF-$\alpha$-stimulated LNCaP cells showed a significant increase in nuclear factor-${\kappa}B$ (NF-${\kappa}B$) luciferase activity. However, mangiferin treatment markedly decreased TNF-$\alpha$-induced NF-${\kappa}B$ luciferase activity. Furthermore, mangiferin suppressed nuclear translocation of the NF-${\kappa}B$ subunits p65 and p50. Collectively, our results indicate that mangiferin is a potential anti-invasive agent that acts by suppressing NF-${\kappa}B$-mediated MMP-9 expression.

Recombinant Interferon-${\alpha}$ Cross-linked with Thymosin ${\alpha}$1 is Biologically Active

  • Jeong, Jee-Yeong;Chung, Hye-Shin
    • BMB Reports
    • /
    • v.29 no.4
    • /
    • pp.365-371
    • /
    • 1996
  • Partially reduced interferon-a ($IFN-{\alpha}$) was cross-linked with thymosin ${\alpha}1$ ($T{\alpha}1$) using sulfo-succinimidyl (4-iodoacetyl) amino benzoate (SIAB), a bifunctional cross-linking reagent. The partially reduced $IFN-{\alpha}$ optimal for the cross-linking reaction was obtained by incubating native $IFN-{\alpha}$ with 0.5 mM DTT at $30^{\circ}C$ for 60~100 min. $T{\alpha}1$ was activated by incubating with sulfo-SIAB at $37^{\circ}C$ for 30 min to produce $T{\alpha}1-IAB$. The $T{\alpha}1-IFN-{\alpha}$ cross-linking was achieved by the reaction of the partially reduced $IFN-{\alpha}$ with $T{\alpha}1-IAB$. This cross-linking was between the sulfhydryl group of Cys1 in $IFN-{\alpha}$ and the N-terminal amino group of $T{\alpha}1$ through acetyl amino benzoate as a spacer. The immunological activity of the cross-linked molecule showed the same extent as that of $T{\alpha}1$, and most of the antiviral activity was retained compared to that of the partially reduced $IFN-{\alpha}$.

  • PDF

Effect of pH values and inoculation amounts for α-glucosidase inhibitory activity in mulberry leaf fermentation

  • Kwon, O-Chul;Ju, Wan-Taek;Kim, Hyun-Bok;Sung, Gyoo-Byung;Kim, Yong-Soon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.34 no.2
    • /
    • pp.38-44
    • /
    • 2017
  • Mulberry leaves containing 1-deoxynojirimycin (DNJ) have been recognized as a potentially important source for prevent or treat hyperglycemia. However, DNJ content of natural mulberry leaf are as low as 0.1%. Thus, the most effective method for increasing ${\alpha}$-glucosidase inhibitory activity with the DNJ high-production is needed. In this study, we investigated the influence of ${\alpha}$-glucosidase inhibitory activity according to different pH values (6-9) and inoculation amounts (0.1-0.5%) when Bacillus subtilis cultured on mulberry leaf powder media. We confirmed that ${\alpha}$-glucosidase inhibitory activity was difference according to culture conditions of different pH values, inoculation amounts, and fermentation times. The results of mulberry leaf fermentation according to pH values and inoculation amounts were shown that the optimal conditions for ${\alpha}$-glucosidase inhibitory activity were defined as pH 7 and 9, inoculation amount 0.4%, and incubation until 2 to 4 days. These results can be provided a basic data for the optimal culture conditions increasing ${\alpha}$-glucosidase inhibitory activity from mulberry leaf fermentation.

Partial Characterization of α-Galactosidic Activity from the Antarctic Bacterial Isolate, Paenibacillus sp. LX-20 as a Potential Feed Enzyme Source

  • Park, In-Kyung;Lee, Jae-Koo;Cho, Jaie-Soon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.852-860
    • /
    • 2012
  • An Antarctic bacterial isolate displaying extracellular ${\alpha}$-galactosidic activity was named Paenibacillus sp. LX-20 based on 16S rRNA gene sequence analysis. Optimal activity for the LX-20 ${\alpha}$-galactosidase occurred at pH 6.0-6.5 and $45^{\circ}C$. The enzyme immobilized on the smart polymer Eudragit L-100 retained 70% of its original activity after incubation for 30 min at $50^{\circ}C$, while the free enzyme retained 58% of activity. The enzyme had relatively high specificity for ${\alpha}$-D-galactosides such as p-nitrophenyl-${\alpha}$-galactopyranoside, melibiose, raffinose and stachyose, and was resistant to some proteases such as trypsin, pancreatin and pronase. Enzyme activity was almost completely inhibited by $Ag^+$, $Hg^{2+}$, $Cu^{2+}$, and sodium dodecyl sulfate, but activity was not affected by ${\beta}$-mercaptoethanol or EDTA. LX-20 ${\alpha}$-galactosidase may be potentially useful as an additive for soybean processing in the feed industry.

The Activity and Characteristics of $\alpha$-Amylase Present in Soy Milk and Jeungpyun Batters (증편 제조시 콩물과 반죽 내의 $\alpha$-amylase활성 및 특성에 관한 연구)

  • Na, Han-Na;Yoon, Sun;Kim, Jung-Soo;Kim, Bo-Young
    • Korean journal of food and cookery science
    • /
    • v.14 no.3
    • /
    • pp.261-265
    • /
    • 1998
  • The activity and characteristics of ${\alpha}$-amylase in soy milk as well as in Jeungpyun batters were determined to investigate the enzyme system related to Jeungpyun preparation. ${\alpha}$-Amylase activity was detected in soy milk as well as in Jeungpyun batters. Soy milk had ${\alpha}$-amylase activity of 0.79 units/mg protein for gelatinized starch and 0.036 units/mg protein for raw starch. ${\alpha}$-Amylase in soy milk showed maximum activities at pH 5.92∼6.87 and at 60$^{\circ}C$ for both gelatinized starch and raw starch. ${\alpha}$-Amylase activities of Jeungpyun batters containing soy milk were 25.59 units/mg protein for gelatinized starch and 1.37 units/mg protein for raw starch. Jeungpyun batters without soy milk demonstrated ${\alpha}$-amylase activities of 3.37 units/mg protein for gelatinized starch and 0.49 units/mg protein for raw starch. ${\alpha}$-Amylase of Jeungpyun batters showed an optimal activity at pH 5.25 and at 60$^{\circ}C$ for both gelatinized and raw starch. The results demonstrated that Jeungpyun batters with soy milk showed significantly higher ${\alpha}$-amylase activity than the ones without soy milk.

  • PDF

Estrogen Induces CK2α Activation via Generation of Reactive Oxygen Species

  • Jeong, Soo-Yeon;Im, Suhn-Young
    • Biomedical Science Letters
    • /
    • v.25 no.1
    • /
    • pp.23-31
    • /
    • 2019
  • The protein kinase $CK2{\alpha}$ (formerly Casein Kinase II) is implicated in tumorigenesis and transformation. However, the mechanisms of $CK2{\alpha}$ activation in breast cancer have yet to be elucidated. This study investigated the mechanisms of $CK2{\alpha}$ activation in estrogen signaling. Estrogen increased reactive oxygen species (ROS) production, $CK2{\alpha}$ activity, and protein expression in estrogen receptor positive ($ER^+$) MCF-7 human breast cancer cells, which were inhibited by the antioxidant N-acetyl-L-cysteine. $H_2O_2$ enhanced $CK2{\alpha}$ activity and protein expression. Human epidermal growth factor (EGF) increased ROS production, $CK2{\alpha}$ activity and protein expression in EGF receptor 2 (HER2)-overexpressing MCF-7 (MCF-7 HER2) cells, but not in MCF-7 cells. Estrogen induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK). The p38 inhibitor, SB202190, blocked estrogen-induced increases in ROS production, $CK2{\alpha}$ activity and $CK2{\alpha}$ protein expression. The data suggest that ROS/p38 MAPK is the key inducer of $CK2{\alpha}$ activation in response to estrogen or EGF.

Antidiabetic Activity of an Ayurvedic Formulation Chaturmukha Rasa: A Mechanism Based Study

  • Sharma, Akansha;Tiwari, Raj K;Sharma, Vikas;Pandey, Ravindra K;Shukla, Shiv Shnakar
    • Journal of Pharmacopuncture
    • /
    • v.22 no.2
    • /
    • pp.115-121
    • /
    • 2019
  • Objectives: The objective of this study was to evaluate antidiabetic activity of Chaturmukha rasa based on streptozotocin induced diabetes model, alpha amylase inhibitory activity, alpha Glucosidase inhibitory activity and inhibition of sucrase. Methods: Chaturmukha rasa was prepared as per Ayurvedic formulary. Antidiabetic activity was measured in experimentally streptozotocin induced rats. The dose was taken as 45 mg/kg, i.p. The antidiabetic activity of Chaturmukha rasa was compared Triphala Kwatha, a marketed formulation. Further In vitro $\acute{\alpha}$- Amylase Inhibitory Assay, In vitro salivary amylase Inhibitory Assay, In vitro ${\alpha}-Glucosidase$ Inhibitory Assay and In vitro Sucrase Inhibitory Assay was performed with respect to Chaturmukha rasa. The IC50 value was calculated for all the above activity. Results: Streptozotocin with Acarbose showed significant decrease in blood glucose level whereas streptozotocin with Triphala kwatha showed more decrease in blood glucose level than Streptozotocin with Acarbose. The combination of Streptozotocin + Triphala kwatha + Chaturmukha rasa showed a significant decrease in blood glucose level on 21st day. In vitro $\acute{\alpha}$- Amylase Inhibitory Assay the Chaturmukha rasa showed IC50 value $495.94{\mu}l$ when compared with Acarbose $427.33{\mu}l$, respectively. In the ${\alpha}-Glucosidase$ Inhibitory Assay Chaturmukha rasa showed IC50 value $70.93{\mu}l$ when compared with Acarbose $102.28{\mu}l$, respectively. In vitro Sucrase Inhibitory Assay Chaturmukha rasa showed IC50 value $415.4{\mu}l$ when compared with Acarbose $371.43{\mu}l$, respectively. Conclusion: This study supports that Chaturmukha rasa may inhibit diabetes by inhibition of salivary amylase or alpha Glucosidase or sucrase. This may be the mechanism by which Chaturmukha rasa inhibits diabetes. Further this study supports the usage of Chaturmukha rasa for the management of diabetes.

${\alpha}$-Mangostin Reduced ER Stress-mediated Tumor Growth through Autophagy Activation

  • Kim, Sung-Jin;Hong, Eun-Hye;Lee, Bo-Ra;Park, Moon-Ho;Kim, Ji-Won;Pyun, A-Rim;Kim, Yeon-Jeong;Chang, Sun-Young;Chin, Young-Won;Ko, Hyun-Jeong
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.253-260
    • /
    • 2012
  • ${\alpha}$-Mangostin is a xanthon derivative contained in the fruit hull of mangosteen (Garcinia mangostana L.), and the administration of ${\alpha}$-Mangostin inhibited the growth of transplanted colon cancer, Her/CT26 cells which expressed Her-2/neu as tumor antigen. Although ${\alpha}$-Mangostin was reported to have inhibitory activity against sarco/endoplasmic reticulum $Ca^{2+}$ ATPase like thapsigargin, it showed different activity for autophagy regulation. In the current study, we found that ${\alpha}$-Mangostin induced autophagy activation in mouse intestinal epithelial cells, as GFP-LC3 transgenic mice were orally administered with 20 mg/kg of ${\alpha}$-Mangostin daily for three days. However, the activation of autophagy by ${\alpha}$-Mangostin did not significantly increase OVA-specific T cell proliferation. As we assessed ER stress by using XBP-1 reporter system and phosphorylation of $eIF2{\alpha}$, thapsigargin-induced ER stress was significantly reduced by ${\alpha}$-Mangostin. However, coadministration of thapsigargin with ${\alpha}$-Mangostin completely blocked the antitumor activity of ${\alpha}$-Mangostin, suggesting ER stress with autophagy blockade accelerated tumor growth in mouse colon cancer model. Thus the antitumor activity of ${\alpha}$-Mangostin can be ascribable to the autophagy activation rather than ER stress induction.