• Title/Summary/Keyword: Aloe QDM complex

Search Result 5, Processing Time 0.016 seconds

Effects of Antidiabetic Agent, Aloe QDM complex, on Intracellular Glucose Uptake (항당뇨 물질 Aloe QDM complex의 세포내 포도당 흡수촉진 효능)

  • Im, Sun-A;Kim, Ki-Hyang;Shin, Eunju;Do, Seon-Gil;Jo, Tae Hyung;Park, Young-In;Lee, Chong-Kil
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.1
    • /
    • pp.75-82
    • /
    • 2013
  • Previous studies have shown that Aloe QDM complex, which is consisted of chromium (Cr), aloesin (ALS) and processed Aloe vera gel (PAG), exert antidiabetic activity in a high fat diet-induced mouse model of type 2 diabetes. In this study we examined the mechanism of the antidiabetic activity of the Aloe QDM complex. Rat myoblast cell line L6 cells were cultured in the presence of Cr, ALS, and PAG alone and in combinations, and then the capability of the cells to uptake glucose was examined using radiolabeled glucose. All of the 3 agents, Cr, ALS and PAG, exerted glucose uptake-enhancing activity in L6 cells. The most potent capability to uptake glucose was observed when L6 cells were cultured with the Aloe QDM complex. The activity of the Aloe QDM complex to enhance glucose uptake was prominent in conditions where existing insulin concentrations are low. We also examined the effects of the Aloe QDM complex on the plasma membrane expression of GLUT4 in L6 cells. The Aloe QDM complex increased the content of GLUT4 in the plasma membrane, while decreasing the content of GLUT4 in the light microsome. Taken together, these results show that the antidiabetic activity of the Aloe QDM complex is at least in part due to the stimulation of glucose uptake into the muscle cells, and this activity of the Aloe QDM complex is mediated through the enhancement of the translocation of GLUT4 into the plasma membrane.

Dietary Aloe QDM Complex Reduces Obesity-Induced Insulin Resistance and Adipogenesis in Obese Mice Fed a High-Fat Diet

  • Shin, Seul-Mee;Kim, Seul-Ah;Oh, Hee-Eun;Kong, Hyun-Seok;Shin, Eun-Ju;Do, Seon-Gil;Jo, Tae-Hyung;Park, Young-In;Lee, Chong-Kil;Kim, Kyung-Jae
    • IMMUNE NETWORK
    • /
    • v.12 no.3
    • /
    • pp.96-103
    • /
    • 2012
  • Obesity-induced disorders contribute to the development of metabolic diseases such as insulin resistance, fatty liver diseases, and type 2 diabetes (T2D). In this study, we evaluated whether the Aloe QDM complex could improve metabolic disorders related to blood glucose levels and insulin resistance. Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of Aloe QDM complex or pioglitazone (PGZ) or metformin (Met) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Dietary Aloe QDM complex lowered body weight, fasting blood glucose, plasma insulin, and leptin levels, and markedly reduced the impairment of glucose tolerance in obese mice. Also, Aloe QDM complex significantly enhanced plasma adiponectin levels and insulin sensitivity via AMPK activity in muscles. At the same time, Aloe QDM decreased the mRNA and protein of $PPAR{\gamma}/LXR{\alpha}$ and scavenger receptors in white adipose tissue (WAT). Dietary Aloe QDM complex reduces obesity-induced glucose tolerance not only by suppressing $PPAR{\gamma}/LXR{\alpha}$ but also by enhancing AMPK activity in the WAT and muscles, both of which are important peripheral tissues affecting insulin resistance. The Aloe QDM complex could be used as a nutritional intervention against T2D.

Down-Regulation of Adipogenesis and Hyperglycemia in Diet-Induced Obesity Mouse Model by Aloe QDM

  • Kong, Hyun-Seok;Lee, Sung-Won;Shin, Seul-Mee;Kwon, Jeung-Hak;Jo, Tae-Hyung;Shin, Eun-Ju;Shim, Kyu-Suk;Park, Young-In;Lee, Chong-Kil;Kim, Kyung-Jae
    • Biomolecules & Therapeutics
    • /
    • v.18 no.3
    • /
    • pp.336-342
    • /
    • 2010
  • Obesity-induced disorders contribute to the development of metabolic diseases such as insulin resistance, fatty liver diseases, and type 2 diabetes (T2D). In this study, we evaluated the hypoglycemic and hypolipidemic effects of aloe formula in high fat diet (HFD)-fed C57BL/6N mice. Male mice fed HFD for 28 weeks received a supplement of aloe formula, PAG, ALS, Aloe QDM, and an Aloe QDM complex for a further 8 weeks and were then compared with regular diet fed mice. After the experimental period, the blood glucose levels of the Aloe QDM complex-and PGZ-supplemented mice were significantly lower than those of the HFD-fed mice. Aloe formula, especially the Aloe QDM complex, and the PGZ treatment group profoundly affected the IPGTT and HOMA-IR. Immunochemistry was done for the morphological observation and the resulting sizes of adipocytes around the epididymis were significantly decreased when comparing the aloe formula-treated and HFD-fed groups. Further, aloe formula decreased mRNA expression of fatty acid synthesis enzymes and led to reduced hepatic steatosis in both liver and WAT. These results suggest that supplementation of Aloe QDM complex in the HFD-fed mice improved insulin resistance by lowering blood glucose levels and reducing adipocytes. Our data suggest that dietary aloe formula reduces obesity-induced glucose tolerance by suppressing fatty acid synthesis in the WAT and liver, both of which are important peripheral tissues affecting insulin resistance. The Aloe QDM complex could be used as a nutritional intervention against T2D.

Dietary Aloe Improves Insulin Sensitivity via the Suppression of Obesity-induced Inflammation in Obese Mice

  • Shin, Eun-Ju;Shim, Kyu-Suk;Kong, Hyun-Seok;Lee, Sung-Won;Shin, Seul-Mee;Kwon, Jeung-Hak;Jo, Tae-Hyung;Park, Young-In;Lee, Chong-Kil;Kim, Kyung-Jae
    • IMMUNE NETWORK
    • /
    • v.11 no.1
    • /
    • pp.59-67
    • /
    • 2011
  • Background: Insulin resistance is an integral feature of metabolic syndromes, including obesity, hyperglycemia, and hyperlipidemia. In this study, we evaluated whether the aloe component could reduce obesity-induced inflammation and the occurrence of metabolic disorders such as blood glucose and insulin resistance. Methods: Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of aloe formula (PAG, ALS, Aloe QDM, and Aloe QDM complex) or pioglitazone (PGZ) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Results: Aloe QDM lowered fasting blood glucose and plasma insulin compared with HFD. Obesity-induced inflammatory cytokine (IL-$1{\beta}$, -6, -12, TNF-${\alpha}$) and chemokine (CX3CL1, CCL5) mRNA and protein were decreased markedly, as was macrophage infiltration and hepatic triglycerides by Aloe QDM. At the same time, Aloe QDM decreased the mRNA and protein of $PPAR{\gamma}/LXR{\alpha}$ and $11{\beta}$-HSD1 both in the liver and WAT. Conclusion: Dietary aloe formula reduces obesity-induced glucose tolerance not only by suppressing inflammatory responses but also by inducing anti-inflammatory cytokines in the WAT and liver, both of which are important peripheral tissues affecting insulin resistance. The effect of Aloe QDM complex in the WAT and liver are related to its dual action on $PPAR{\gamma}$ and $11{\beta}$-HSD1 ression and its use as a nutritional intervention against T2D and obesity-related inflammation is suggested.

Dietary Aloe Reduces Adipogenesis via the Activation of AMPK and Suppresses Obesity-related Inflammation in Obese Mice

  • Shin, Eun-Ju;Shin, Seul-Mee;Kong, Hyun-Seok;Lee, Sung-Won;Do, Seon-Gil;Jo, Tae-Hyung;Park, Young-In;Lee, Chong-Kil;Hwang, In-Kyeong;Kim, Kyung-Jae
    • IMMUNE NETWORK
    • /
    • v.11 no.2
    • /
    • pp.107-113
    • /
    • 2011
  • Background: Metabolic disorders, including type II diabetes and obesity, present major health risks in industrialized countries. AMP-activated protein kinase (AMPK) has become the focus of a great deal of attention as a novel therapeutic target for the treatment of metabolic syndromes. In this study, we evaluated whether dietary aloe could reduce obesity-induced inflammation and adipogenesis. Methods: Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of aloe formula (PAG, ALS, Aloe QDM, and Aloe QDM complex) or pioglitazone (PGZ) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Results: Aloe QDM complex downregulated fat size through suppressed expression of scavenger receptors on adipose tissue macrophages (ATMs) compared with HFD. Both white adipose tissue (WATs) and muscle exhibited increased AMPK activation through aloe supplementation, and in particular, the Aloe QDM complex. Obesity-induced inflammatory cytokines (IL-$1{\beta}$ and -6) and $HIF1{\alpha}$ mRNA and protein were decreased markedly, as was macrophage infiltration by the Aloe QDM complex. Further, the Aloe QDM complex decreased the translocation of NF-${\kappa}B$ p65 from the cytosol in the WAT. Conclusion: Dietary aloe formula reduced obesity-induced inflammatory responses by activation of AMPK in muscle and suppression of proinflammatory cytokines in the WAT. Additionally, the expression of scavenger receptors in the ATM and activation of AMPK in WAT led to reduction in the percent of body fat. Thus, we suggest that the effect of the Aloe QDM complex in the WAT and muscle are related to activation of AMPK and its use as a nutritional intervention against T2D and obesity-related inflammation.