• Title/Summary/Keyword: Alluvial

Search Result 441, Processing Time 0.025 seconds

Stability Evaluation on Particle Size Characteristics of Bed Materials at High-Velocity Flow (고유속 흐름에서 하상재료의 입도특성에 따른 안정성 평가연구)

  • Kim, Gwang Soo;Jung, Dong Gyu;Kim, Young Do;Park, Yong Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.365-376
    • /
    • 2021
  • In general, domestic streams and rivers are composed of alluvial rivers consisting of sand and gravel beds. These rivers can cause erosion and riverbed changes due to sudden changes in flow rates, such as floods, torrential rains, and heavy rains. In particular, there are various types of erosion, such as contraction erosion caused by changes in river shape, or local erosion occurring around obstacles such as piers, abutments or embankments. In addition, river changes can occur in various forms, such as static or dynamic periods, due to limitations such as flow rate, velocity, and shear stress. This study focused on the erosions of embankments directly related to human casualties among various river structures, and evaluated limit velocities and critical shear stress in order to identify changes in strength of natural materials by identifying the characteristics of natural hoan materials and resistance to erosions. In particular, the limitations of materials according to the type of materials in the river, characteristics of particles, and size of particles were studied using Soil loss, which is a change in the volume of the revetment material, and it is intended to be used as basic data for river design and restoration.

Estimation of Consolidation Characteristics of Soft Ground in Major River Mouth (주요 강하구 연약지반의 압밀 특성 평가)

  • Lee, JunDae;Kwon, YoungChul;Bae, WooSeok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.69-79
    • /
    • 2019
  • The coastal area forms various sedimentary layers according to the environmental conditions such as the topography and geological features of the upper region of the river, ocean currents, and river mouth. Therefore, identifying the characteristics of the marine clay deposited in the coastal area plays a key role in the investigation of the formation of soft ground. In general, alluvial grounds are formed by a variety of factors such as changes in topography and natural environment, they have very diverse qualities depending on the deposited region or sedimentation conditions. The most important thing for the construction of social infrastructures in soft ground areas is economical and efficient treatment of soft ground. In this study, the author collected data from diverse laboratory and field tests on five areas in western and southern offshore with relatively high reliability, and then statistically analyzed them, thereby presenting standard constants for construction design. Correlation between design parameters such as over consolidation ratio, preconsolidation pressure was analyzed using linear and non-linear regression analyses. Also, proposed distribution characteristics of design parameters in consideration of each region's uncertainty through statistical analyses such as normality verification, outlier removal.

Review of Pre-grouting Methods for Shield TBM Tunneling in Difficult Grounds (특수지반에서 쉴드TBM 굴착 시 프리그라우팅 적용 사례 고찰)

  • Yoon, Youngmin;Jeong, Hoyoung;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.528-546
    • /
    • 2018
  • Cases of TBM tunnelling have been consistently increasing worldwide. In many recent subsea and urban tunnelling projects, TBM excavation has been preferably considered due to its advantages over drill and blast tunnelling. Difficult ground conditions are highly probable to appear in subsea and urban tunnels because of the shallow working depth and alluvial characteristics. Under the difficult ground conditions, ground reinforcement measures should be considered including grouting, while it is of great importance to select the optimal grout material and injection method to cope with the ground condition. The benefits from TBM excavation, such as fast excavation, increased safety, and reduced environmental impact, can be achieved by applying appropriate ground reinforcement with the minimum overrun of cost and time. In this report, various grouting methods were reviewed so that they can be applied in difficult ground conditions. In addition, domestic and international cases of successful ground reinforcement for difficult grounds were introduced for future reference.

Analysis of Geological Structure of Volcanic Rock Mass in Ulleung-do using Variations of Magnetic Anomaly (자력탐사 자기이상 분석을 활용한 울릉도 화산암체 지질구조 특성 해석)

  • Kim, Ki-Beom;Kim, Man-Il
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.619-630
    • /
    • 2018
  • The purpose of this study is to investigate the existence of faults and intrusive rocks in the volcanic rock mass of Ulleung-do using magnetic anomalies. The magnetic survey data show that basaltic (mafic) rocks have high magnetic anomalies and that trachytic (felsic) rocks have low magnetic anomalies, implying that the anomaly distributions can be used to distinguish between different volcanic rock types that may be covered by regolith (such as alluvial and colluvial deposits) and other sedimentary layers. Our results show that basaltic rocks are not present within the Nari caldera. However, outside the caldera, the occurrence of high magnetic anomaly values of >$1,000{\gamma}$ is presumed to reflect the existence of basaltic craters or volcanic vents that formed prior to the eruption of the trachytic rocks. In particular, the area with anomaly values of >$1,000{\gamma}$ in the vicinity of Namyang-ri, southwest of Ulleung-do, is interpreted as having a high probability of hosting a crater and vent originating from mafic volcanism.

Study on the Changes in Riverfront Landscape of Taehwa River, Ulsan City (울산시 태화강 수변 경관 변천에 관한 연구)

  • Jeung, Min-Ki;Han, Sam-Geon
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.8
    • /
    • pp.117-128
    • /
    • 2018
  • The central of Ulsan was formed and has been developed in alluvial plains the Riverfront of Taehwa River and Dongcheon River Fortresses including Gyebyeonseong of the late Silla, Chisoseong of the Goryeo, Ulsan Gyeonsangjwabyeongyeongseong, Ulsaneupseong, Ulsanwaeseong and Yeompoyeongseong as well as Gugangseowon and Old Ulsanhyanggyo and other facilities well display such fact. In the southern areas of Taehwa River, Byeokpajeong of Samsan, Buddhist temples and pavilion architectures used to be located. In its upstream areas, Eonyangeupseong, Eonyanghyanggo, Banguseowon and Daegokcheon Petroglyph exist as well. As such, the Riverfront of Taehwa River are a central space where the civilization of Ulsan has grown and developed, and are regarded as a core scenic asset of Ulsan. However, the look and nature of Taehwa River changed significantly due to Ulsan irrigation project and the construction of modern bridges such as Ulsangyo and Ulsan railway bridge during the period of Japanese occupation. The old look of the area started to be ruined by water contaminations and developments of waterfront lands that resulted from the development of Ulsan Industrial Center in 1962. The water quality of Taehwa River has been improved as a result of allotting a huge budget and administrative powers before and after 1997, the year when Ulsan was elevated to a metropolitan city. However, the surrounding views around Taehwa River changed greatly due to various urban development projects including apartment complex constructions. This is because the development of the Riverfront started from a land utilization project, in which the construction of apartment complexes was included in the initial phase; as a result, the areas were changed to be private scenic assets for those apartments. Aware of such issue, this study aims to identify major scenic elements that were present in the period before such developments in the river's surrounding areas from literature and geography materials; and to reveal how various urban development projects that have been performed from the period of Japanese occupation have changed the scenic elements of Riverfront of Taehwa River. The purpose of this study is to identify qualitative and quantitative changes in scenic elements of the Riverfront of Taehwa River as well as the characteristics of the resulting changes in the surrounding scenery.

Liquefaction Hazard Assessment according to Seismic Recurrence Intervals Using Simple Estimating Method in Busan City, Korea (간이평가법을 이용한 지진재현주기별 부산광역시 액상화 재해 평가)

  • Lim, Hyunjee;Jeong, Rae-yoon;Oh, Dongha;Kang, Hyejin;Son, Moon
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.589-602
    • /
    • 2020
  • As can be seen in many earthquakes, liquefaction causes differential settlement, which sometimes produces serious damages such as building destruction and ground subsidence. There are many possible active faults near the Busan city and the Yangsan, Dongrae, and Ilgwang faults among them pass through the city. The Busan city is also located within the influence of recent earthquakes, which occurred in the Gyeongju, Pohang, and Kumamoto (Japan). Along the wide fault valleys in the city, the Quaternary unconsolidated alluvial sediments are thickly accumulated, and the reclaimed lands with beach sediments are widely distributed in the coastal area. A large earthquake near or in the Busan city is thus expected to cause major damage due to liquefaction in urban areas. This study conducted an assessment of the liquefaction hazard according to seismic recurrence intervals across the Busan city. As a result, although there are slight differences in degree depending on seismic recurrence intervals, it is predicted that the liquefaction potential is very high in the areas of the Nakdonggang Estuary, Busan Bay, Suyeong Bay, and Songjeong Station. In addition, it is shown that the shorter the seismic recurrence interval, the greater difference the liquefaction potential depending on site periods.

A Study on Optical Design Factors by Artificial Recharge Performance (인공함양 주입성능평가에 의한 설계요소 산정 연구)

  • Won, Kyoung-Sik;Lee, Yeoung-Dong;Shin, Dong-Min;Kim, Byeong-Jun;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.603-615
    • /
    • 2020
  • The design factors of artificial recharge are determined by considering the hydrogeological characteristics of the aquifer. The optimal design factors for artificial recharge were derived after performing the injection tests step by step for each injection type (vertical well, ditch and mixed type), which were built in the test site of the study area. It was analyzed that the difference in the injection effect according to the diameter of the injection well was not large, and the 100 mm well was evaluated as appropriate in consideration of the availability and economy of land use. Since the injection effect was well maintained even in the upper rock, the depth of the injection well was proposed for the alluvial layer and the upper rock layer. On the other hand, in four cases of filter media in the ditch, it was analyzed that the penetration efficiency and the hydraulic interference effect indicated excellent injection performance when a filter medium of 10 to 30 mm diameter was filled in the ditch. In addition, the proper spacing of the injection wells was analyzed as 9~12 m considering the interference efficiency. The interference efficiency attenuation coefficient per 1 m of hole spacing was calculated to be 1.75% in this area. In the future study, the artificial recharge design factors obtained in this stage are applied and verified on site construction and operation. Also it is expected to contribute to securing water in areas where there is always a lack of water.

A Pollen Analysis on the Environmental Changes during the Later Half of the Postglacial Age around the Basin of Onyang River, Asan (화분분석을 이용한 아산시 온양천 유역의 후빙기 후기 환경변화)

  • PARK, Ji-Hoon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.1
    • /
    • pp.39-48
    • /
    • 2010
  • This is a case study to research the environmental changes that occurred during the Latter Half of the postglacial age around the Basin of Onyang River in Asan, Korea. In line with this purpose, the author performed a pollen analysis and a radiocarbon dating on the deposits of alluvial fan around the upper Geumgok River, a tributary of Onyang River. Sampling point was at the altitude of about 67.5 meters, which belongs to the central zone of the cool temperate forest. The followings are the results of the study. The study area has passed through SC-I (the coniferous forest period in which Pinus was dominant), SC-II (the deciduous broad-leaved forest period in which Quercus and Castanea were dominant) and SC-III (the mixed conifer and deciduous broad-leaved forest period, in which Pinus, Quercus and Ulmus/Zelkova were dominant) respectively since about 3,000 yrB.P. SC-I period and SC-II period are presumed to be between about 3,000 and 2,000 yrB. P., and SC-III period to begin after 2,000 yrB.P. In comparison with the nationwide pollen zone during the postglacial age, SC-I and SC-II periods are contrasted with the R-IIIa zone and also the SC-III zone with the RIIIb zone. In addition, it is assumed that Pinus densiflora forest luxuriated there since 2,000 yrB.P. due to the destruction of forests, and that a lot of Fagopyrum pollen appeared; altogether, it was the so-called human interference period, from which forests began to be markedly destroyed. It is concluded that in those days inhabitants leaded agricultural life.

Pollen Analysis on Tangjeong Plains, Asan-Si, Korea (아산(牙山) 탕정평야(湯井平野)의 화분분석(花粉分析))

  • PARK, Ji-Hoon;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.2
    • /
    • pp.53-61
    • /
    • 2010
  • In this study, pollen analysis and a dating were performed on the alluvial deposits in the Tangjeong Plains in Asan-Si, Chungcheongnam-Do. Specimens were collected at the altitude of about 12m, which belongs to the mid-forest belt in the cool temperate zone. The followings show the results. In general, the target zone passed through TJ-I (the coniferous forest age in which the Pinus forest was dominant), TJ-II (the mixed conifer and deciduous broad-leaved forest age in which Pinus and Quercus were dominant) and TJ-III (the coniferous forest age in which the Pinus was dominant) respectively. TJ-II was subdivided into TJ-IIa and TJ-IIb. TJ-I is presumed to be between about 2,810 and 1,500yrB.P.; TJ-IIa to be between about 1,500 and 1,370yrB.P.; and TJ-IIb to be between about 1,370 and 770yrB.P. As for TJ-III, it is presumed to begin after about 770yrB.P. In comparison with the nationwide pollen zone during the Postglacial, TJ-I and TJ-II are contrasted with the R-IIIa period and also TJ-III is contrasted with RIIIb (so-called human interference age). It is also presumed that Pinus luxuriated there after about 770yrB.P. as forests began to be markedly destroyed in the Tangjeong Plains.

Holocene climate characteristics in Korean Peninsula with the special reference to sea level changes (해수면 변동으로 본 한반도 홀로세(Holocene) 기후변화)

  • Hwang, Sangill;Yoon, Soon-Ock
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.235-246
    • /
    • 2011
  • Sea level fluctuations during the Holocene reconstructed by the results of age dating, microfossils researches and sedimentary facies from coastal alluvial plains contain the valuable informations on climatic changes. The sea level during 'maximum phase of transgression' during 6,000~5,000 yr BP was slightly higher than the present by approximately 0.8~1.0 m and the summer temperature conditions seemed to be higher than those of the present by 2~3℃ in the Central Europe when the period of 'Climatic Optimum' might be dominant. The sea level in Korean Peninsula was assumed by 0.8~1.0 m higher at that time compared to the present and climate seemed to be warmer. At 2,000~1,800 yr BP in Korean Peninsula, the sea level reached the higher stand than the present by approximately 1.1~1.3 m and the climatic conditions might be warm similar to the period of 'Climatic Optimum'. Although the temperature in the Central Europe during the period of 'Subboreal' was about 2~3℃ cooler, it is supposed that the sea level in Korean Peninsula was relatively higher than the present. The sea level at 2,300 yr BP might be similar to that of the present, which was the lowest level since the mid-Holocene. From the fact, climatic environment during the cold period might not be reflected exactly in the sea level.