• 제목/요약/키워드: Alloying element effect

검색결과 79건 처리시간 0.024초

합금원소 첨가에 따른 Ag 피복 Bi-2223 초전도 선재의 열전도도 측정 및 특성평가 (The Effects of Alloying-Element Additions to Ag Sheath on Thermal Conductivity and Properties of Bi-2223 Superconductor Tapes)

  • 주진호;장석헌;김정호;임준형;김규태;지봉기
    • 한국전기전자재료학회논문지
    • /
    • 제16권7호
    • /
    • pp.627-633
    • /
    • 2003
  • The effects of alloying-element additions to Ag sheath on thermal conductivity and mechanical properties of Bi-2223 superconductor tapes have been evaluated. In order to evaluate the effects of sheath alloys and their configuration on the properties of tape, various combinations of Ag and Ag alloys were selected as the inner and outer sheath. Thermal conductivity of the tapes was evaluated by using thermal integral method at 10 ∼120 K. It was observed that the addition of Mg, Sb, and Au to Ag sheath significantly decreased the thermal conductivity at low temperature probably due to the alloying effect. Specifically, the thermal conductivity of AgMg, AgSb, and AgAu at 40 K were 411.4, 142.3, and 109.7 W/(m·K), respectly, which is about 2∼9 times lower than that of Ag (1004.6 W/(m·K)). In addition, the thermal conductivity of alloy-sheathed tape was significantly dependent on their thermal conductivities of constituent sheath materials. The mechanical properties of alloy-sheathed tapes were also evaluated. Yield strength and tensile strength were improved but workability decreased for alloy-sheathed tapes.

용접열영향부 호스테나이트 결정립 크기 예측 모델링 (Prediction model for prior austenite grain size in low-alloy steel weld HAZ)

  • 엄상호;문준오;이창희;윤지현;이봉상
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2003년도 춘계학술발표대회 개요집
    • /
    • pp.43-45
    • /
    • 2003
  • The empirical model for predicting the prior austenite grain size in low-alloy steel weld HAZ was developed through examining the effect of alloying element. The test alloys were made by vacuum induction melting. Grain growth behaviors were observed and analyzed by isothermal grain growth test and subsequent metallography. As a result, it was found that the grain growth might be controlled by grain boundary diffusion and the empirical model for grain growth was presented.

  • PDF

Mechanical and Thermal Properties of Ag sheath alloys for Bi-2223 superconductor tape

  • Kim, Tae-Woo;Joo, Jin-Ho;Nah, Wan-Soo;Yoo, Jai-Moo;Ko, Jae-Woong;Kim, Hai-Doo;Chung, Hyung-Sik;Lee, Sang-Hyun
    • Progress in Superconductivity
    • /
    • 제1권1호
    • /
    • pp.61-67
    • /
    • 1999
  • We evaluated the effect of alloying element additions to Ag sheath on mechanical, electrical and thermal properties of Bi-2223. Additions of Au, Pd and Mg to Ag sheath increased hardness and strength, while reduced elongation and electrical and thermal conductivity. In addition, microstructural investigation showed that the grain size of Ag significantly decreased with increasing content of alloying elements. The improvements in strength and hardness are believed to be due to the presence of alloying elements that lead to strengthen materials by combined effects of solid-solution, dispersion hardening and grain size hardening. Thermal conductivity of Ag and Ag alloys was evaluated in the temperature range from 77 K to 300 K, and com-pared to calculated value obtained by Wiedermann-Franz law. It was observed that the thermal conductivity decreased with increasing the content of alloying elements. Specifically, the thermal conductivity of $Ag_{0.92}Pd_{0.06}Mg_{0.02}$ alloy was measured to be $48.2W/(m{\cdot}K)$ at 77 K, which is about 6 times lower than that of $Ag(302.6W/(m{\cdot}K))$.

  • PDF

피복합금을 사용한 Bi-2223 선재의 열전도도 및 전기전도도 특성평가 (Effects of Ag-alloy sheath on thermal/electrical conductivity of Bi-2223 superconductor tapes)

  • 장석헌;지봉기;임준형;주진호;나완수
    • Progress in Superconductivity
    • /
    • 제4권2호
    • /
    • pp.180-183
    • /
    • 2003
  • We evaluated the effect of alloying-element additions to Ag sheath on thermal conductivity of Bi-2223 superconductor tapes. In order to evaluate the effect of sheath alloys and their configuration on the properties of tape, various combinations of Ag and Ag alloys were selected as inner and outer sheath. Thermal conductivity of the tapes was measured by using thermal integral method at 10∼120 K. It is observed that the presence of alloying-elements such as Mg, Sb, and Au in Ag sheath results in decreased thermal conductivity at low temperature. Specifically, the thermal conductivity of AgMg, AgSb, and AgAu at 40 K were 411.4, 142.3, and 109.7 W/(m·K), respectively, which is about 2∼9 times lower than that of Ag (1004.6 W/(m·K)). In addition, the thermal conductivity of alloy-sheathed tape was significantly dependent on their values of constituent sheath materials.

  • PDF

Seawater ballast tank 환경에서 저합금강의 내식성에 미치는 합금원소의 영향 (Effects of Alloying Elements on Corrosion Resistance of Low Alloyed Steels in a Seawater Ballast Tank Environment)

  • 김동우;김희산
    • 대한금속재료학회지
    • /
    • 제48권6호
    • /
    • pp.523-532
    • /
    • 2010
  • Co-application of organic coating and cathodic protection has not provided enough durability to low-alloyed steels inseawater ballast tank (SBT) environments. An attempt has made to study the effect of alloy elements (Al, Cr, Cu, Mo, Ni, Si, W) on general and localized corrosion resistance of steels as basic research to develop new low-allowed steels resistive to corrosion in SBT environments. For this study, we measured the corrosion rate by the weigh loss method after periodic immersion in synthetic seawater at $60^{\circ}C$, evaluated the localized corrosion resistance by an immersion test in concentrated chloride solution with the critical pH depending on the alloy element (Fe, Cr, Al, Ni), determined the permeability of chloride ion across the rust layer by measuring the membrane potential, and finally, we analyzed the rust layer by EPMA mapping and compared the result with the E-pH diagram calculated in the study. The immersion test of up to 55 days in the synthetic seawater showed that chromium, aluminium, and nickel are beneficial but the other elements are detrimental to corrosion resistance. Among the beneficial elements, chromium and aluminium effectively decreased the corrosion rate of the steels during the initial immersion, while nickel effectively decreased the corrosion rate in a longer than 30-day immersion. The low corrosion rate of Cr- or Al-alloyed steel in the initial period was due to the formation of $Cr_2FeO_4$ or $Al_2FeO_4$, respectively -the predicted oxide in the E-pH diagram- which is known as a more protective oxide than $Fe_3O_4$. The increased corrosion rate of Cr-alloyed steels with alonger than 30-day exposure was due to low localized corrosion resistance, which is explained bythe effect of the alloying element on a critical pH. In the meantime, the low corrosion rate of Ni-alloyed steel with a longer than 30-day exposure wasdue to an Ni enriched layer containing $Fe_2NiO_4$, the predicted oxide in the E-pH diagram. Finally, the measurement of the membrane potential depending on the alloying element showed that a lower permeability of chloride ion does not always result in higher corrosion resistance in seawater.

Design of Advanced Weathering Steel with High Corrosion Resistance for Structural Applications

  • Choi, B.K.;Jung, H.G.;Yoo, J.Y.;Kim, K.Y.
    • Corrosion Science and Technology
    • /
    • 제4권4호
    • /
    • pp.121-129
    • /
    • 2005
  • Basic design concept of the future steel structure requires environmental compatibility and maintenance free capability to minimize economic burdens. Recent trends in alloy design for advanced weathering steel include addition of various alloying elements which can enhance formation of stable and protective rust layer even in polluted urban and/or high $Cl^{-}$ environment. The effects of Ca, Ni, W, and Mo addition on the corrosion property of Ca-modified weathering steel were evaluated through a series of electrochemical tests (pH measurement and electrochemical impedance spectroscopy: EIS) and structural analysis on rust layer formed on the steel surface. Ca-containing inclusions of Ca-Al-Mn-O-S compound are formed if the amount of Ca addition is over 25 ppm. Steels with higher Ca content results in higher pH value for condensed water film formed on the steel surface, however, addition of Ni, W, and Mo does not affect pH value of the thin water film. The steels containing a high amount of Ca, Ni, W and Mo showed a dense and compact rust layer with enhanced amount of ${\alpha}-FeOOH$. Addition of Ni, W and Mo in Ca-modified weathering steel shows anion-selectivity and contributes to lower the permeability of $Cl^{-}$ ions. Effect of each alloying element on the formation of protective rust layer will be discussed in detail with respect to corrosion resistance.

개량 Al-6.5Si 합금의 미세조직, 인장 및 충격 인성에 미치는 합금 원소 첨가의 영향 (Effect of Alloying Element Addition on the Microstructure, Tensile and Impact Toughness of the Modified Al-6.5Si Alloy)

  • 박태현;백민석;윤상일;김진평;이기안
    • 소성∙가공
    • /
    • 제29권3호
    • /
    • pp.135-143
    • /
    • 2020
  • Low-cost alloying elements were added to a modified Al-6.5Si alloy and its microstructure, tensile and impact toughness properties were investigated. The alloying elements added were Mg, Zn, and Cu, and two kinds of alloy A (Mg:0.5, Zn:1, Cu:1.5 wt.%) and alloy B (Mg:2, Zn:1.5, Cu:2 wt.%) were prepared. In the as-cast Al-6.5Si alloys, Si phases were distributed at the dendrite interfaces, and Al2Cu, Mg2Si, Al6 (Fe,Mn) and Al5 (Fe,Mn)Si precipitates were also observed. The size and fraction of casting defects were measured to be higher for alloy A than for alloy B. The secondary dendrite arm spacing of alloy B was finer than that of alloy A. It was confirmed by the JMatPro S/W that the cooling rate of alloy B could be more rapid than alloy A. The alloy B had higher hardness and strength compared to the values of alloy A. However, the alloy A showed better impact toughness than alloy B. Based on the above results, the deformation mechanism of Al-6.5Si alloy and the improving method for mechanical properties were also discussed.

Low Temperature Thermal Conductivity of Sheath Alloys for High $T_{c}$ Superconductor Tape

  • Park, Hyung-Sang;Oh, Seung-Jin;Jinho Joo;Jaimoo Yoo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제1권2호
    • /
    • pp.32-37
    • /
    • 2000
  • Effect of alloying element additions to Ag on thermal conductivity and electrical conductivity of sheath materials for Bi-Pb-Sr-Ca-Cu-O(BSCCO) tapes has been characterized. The thermal conductivity at low temperature range (10~300K) of Ag and Ag alloys were evaluated by both direct and indirect measurement techniqueas and compared with each other, It was observed that the thermal conductivity decreases with increasing the content of alloying element such as Au, Pd and Mg. Thermal conductivity of pure Ag at 3 0K was measured to be 994.0 W(m.K) on the other hand, the corresponding values of $Ag_{0.9995}Mg_{0.0005}$, $Ag_{0.974}$, $Au_{0.025}$, $Mg_{0.001}$, $Ab_{0.973}$, $Au_{0.025}$, $Mg_{0.002}$ and $Ag_{0.92}$, $Pb_{0.06}$, $Mg_{0.02}$ were 342.6, 62.1, 59.2 and 28.9 W(m.K), respectively, indicating 3 to 30 times lower than that of pure Ag. In addition, the thermal conductivity of pure Ag measured by direct and indirect measurement techniques was 303.2 and 363.8 W(m.K) The difference in this study is considered to be within an acceptable error range compared to the reference data.

  • PDF

7075 및 7050 알루미늄 합금의 응고 거동 및 편석에 미치는 냉각 속도의 영향 (The Effect of Cooling Rate on the Solidification Behavior and Segregation of 7075 and 7050 Aluminum Alloys)

  • 최정윤;권영동;이주원;이진형
    • 한국주조공학회지
    • /
    • 제21권6호
    • /
    • pp.343-349
    • /
    • 2001
  • The effect of cooling rate on the solidification microstructure and segregation behavior of 7075 and 7050 aluminum alloy was investigated. Samples were solidified with cooling rates from 0.3 to $17^{\circ}K/sec$. Using the cooling curves of each sample, liquidus, eutectic and intermetallic reaction temperatures were estimated. The microstructures were characterized in terms of dendrite arm spacing and eutectic volume fraction. The segregation behavior of each alloying element of these alloys in various cooling rates was discussed.

  • PDF

지르코늄합금의 부식특성에 미치는 Cu 영향 평가 (Evaluation of Cu Effect on Corrosion Characteristics of Zr Alloys)

  • 김현길;최병권;정용환
    • 한국재료학회지
    • /
    • 제14권7호
    • /
    • pp.462-469
    • /
    • 2004
  • The effect of Cu addition on the corrosion characteristics of Zr alloys that developed for nuclear fuel cladding in KAERI (Korea Atomic Energy Research Institute) was evaluated. The alloys having different element of Nb, Sn, Fe, Cr and Cu were manufactured and the corrosion tests of the alloys were performed in static autoclave at $360^{\circ}C$, distilled water condition. The alloys were also examined for their microstructures using the optical microscope and the TEM equipped with EDS and the oxide property was characterized by using X-ray diffraction. From the result of corrosion test more than 450 days, the corrosion rate of the Zr-based alloys was changed with alloying element such as Nb, Sn, Fe, Cr and especially affected by Cu addition. The corrosion resistance was increased with increasing the Cu content and the tetragonal $ZrO_2$ layer was more stabilized on the Cu-containing alloys.