• 제목/요약/키워드: Alloying

검색결과 1,176건 처리시간 0.026초

Investigation of Ball Size Effect on Microstructure and Thermoelectric Properties of p-type BiSbTe by Mechanical Alloying

  • Lwin, May Likha;Yoon, Sang-min;Madavali, Babu;Lee, Chul-Hee;Hong, Soon-Jik
    • 한국분말재료학회지
    • /
    • 제23권2호
    • /
    • pp.120-125
    • /
    • 2016
  • P-type ternary $Bi_{0.5}Sb_{1.5}Te_3$ alloys are fabricated via mechanical alloying (MA) and spark plasma sintering (SPS). Different ball sizes are used in the MA process, and their effect on the microstructure; hardness, and thermoelectric properties of the p-type BiSbTe alloys are investigated. The phases of milled powders and bulks are identified using an X-ray diffraction technique. The morphology of milled powders and fracture surface of compacted samples are examined using scanning electron microscopy. The morphology, phase, and grain structures of the samples are not altered by the use of different ball sizes in the MA process. Measurements of the thermoelectric (TE) transport properties including the electrical conductivity, Seebeck coefficient, and power factor are measured at temperatures of 300-400 K for samples treated by SPS. The TE properties do not depend on the ball size used in the MA process.

Cr-Mo계 금형강의 기계적 성질에 미치는 합금원소 및 템퍼링의 영향 (Effects of Alloying Element and Tempering on the Mechanical Properties of Cr-Mo Plastic Mold Steels)

  • 김남규;김병옥;이오연
    • 열처리공학회지
    • /
    • 제25권4호
    • /
    • pp.196-205
    • /
    • 2012
  • The purpose of this study is to enhance the hardenability and the mechanical properties by the addition of alloying elements such as Ni, Cr, Mo and B for the development of Cr-Mo plastic mold steel with uniform hardness and microstructure. The ingots were prepared by vacuum induction melting and forged to ${\Phi}35mm$ round bar. Forged bars were quenched and tempered at $200{\sim}600^{\circ}C$ for 1.5 hour. Jominy test, boron distribution observation, microstructual observation, tensile test and charpy impact test were conducted. It was confirmed that the hardenablity of these steels was improved by increasing of alloying elements and further promoted by the addition of boron. The critical rate of cooling required to obtain the bainitic structure for 0.27C-1.23Cr-0.28Mo-B steel was $0.5^{\circ}C/sec$. Hardness and strength of Cr-Mo steels decreased with increasing tempering temperature, but elongation and reduction of area increased with increasing tempering temperature. However, impact energy tempered at $400^{\circ}C$ showed the lowest value in the range $200{\sim}600^{\circ}C$ due to the temper embrittlement.

오스템퍼링 처리한 구상흑연주철(ADI)의 내마모성에 미치는 합금원소의 영향에 관한 연구 (Effect of Alloying Elements on the Wear Resistance of Austempered Ductile Iron)

  • 이상학;김홍범;김종철;천병욱;김창규;최창옥
    • 한국주조공학회지
    • /
    • 제19권1호
    • /
    • pp.24-32
    • /
    • 1999
  • A series of investigations for Austempered Ductile Iron (ADI) castings were carried out by using the specimens with various chemical compositions and heat treatment conditions. The rolling wear characteristics of alloyed austempered ductile irons under an unlubricated dry rolling condition was evaluated by the Amsler type test with 9.09% sliding ratio. Generally, the wear amount was increased with the austempering temperature and decreased when the hardness of the matrix was higher. The alloying elements also influenced the austempering reaction, the microstructure and the mechanical properties. In this study, the mechanical properties (i.e.) ultimate tensile strength (UTS), hardness, elongation) and the wear resistance are analysed to show the relationship between the alloying elements and the austempering temperatures. Mo, Cu and Ni are alloyed individually or in combination. It has been found that when Cu and Ni alloyed individually to a casting, the wear amount is increased than others with elements alloyed in combination. The amount of rolling wear loss was decreased when Mo was alloyed in cast iron, individually or in combination.

  • PDF

구상흑연주철(球狀黑鉛鑄鐵)의 혼합조직(混合組織) 및 강인성(强靭性)에 미치는 합금원소(合金元素)와 특수열처리(特殊熱處理)의 영향(影響) (Effects of the Alloying Elements and Special Heat Treatment on the Multi-phase (Ferrite-Bainite-Martensite), Strength and Toughness in Ductile Cast Iron)

  • 김석원;이의권;심재환
    • 한국주조공학회지
    • /
    • 제13권5호
    • /
    • pp.432-440
    • /
    • 1993
  • Ductile cast iron has a good ductility and toughness than those of gray cast iron, because the shape of graphite is spheroidal. Also, it has been reported that, additional strengthening and toughening of the ductile cast iron can be obtainded from the proper combination of matrix structures by the heat treatment and addition of alloying elements. In this study the effect of special heat treatment and addition of alloying elements(Ni, Mo) on the multi-phase(ferrite-bainite-martensite) structures, strength and toughness of ductile cast iron were studied systematically. In water quenching from $770^{\circ}C$, the martensite volume(%) increased, but the ferrite volume(%) decreased with increment of Ni content. In as cast, pearlite volume(%) and hardness increased with increment of Mo and Ni contents. And with the increment of the destabilization austempering holding time, the bainite volume(%) increased but the martensite volume(%) decreased. As destabilization austempering holding time is same, bainite volume(%) decreased, martensite increased with the increment of Ni and Mo contents. The hardness and tensile strength decreased, but impact energy increased with the decrease of Ni and Mo contents, and increment of holding time of destabilization austempering treatment.

  • PDF

수소 가압형 기계적 합금화법을 이용한 Mg9Ti1-(10, 20 wt%)Ni 수소저장합금의 제조와 수소화 특성 (제 1보 : 합금제조와 특성평가) (The Fabrication of Mg9Ti1-(10, 20 wt%)Ni Hydrogen Absorbing Alloys by Hydrogen Induced Mechanical Alloying and Evaluation of Hydrogenation Properties (Part I : Preparations and Characterizations of Alloys))

  • 홍태환;김경범;김영직
    • 한국수소및신에너지학회논문집
    • /
    • 제13권3호
    • /
    • pp.197-203
    • /
    • 2002
  • The main emphasis of this study was to find an new hydrogen absorbing alloy such as Mg-Ti-Ni-H systems, and to investigate their hydrogenation properties. ($Mg_9Ti_x$)-10, 20wt%Ni-Hx systems were prepared by hydrogen induced mechanical alloying(HIMA) using Mg and Ni chips and sponge Ti. The particles synthesized were characterized by X-ray diffraction, and their morphologies were observed by means of scanning electron microscopy(SEM) with energy dispersive spectrometry (EDS). In addition, the crystal structures were analyzed in terms of their bright-/ dark field images and the selected area diffraction pattern(SADP) of transmission electron microscopy(TEM).

고온초전도 선재용 피복합금의 열전도도 측정 및 특성평가 (Thermal conductivity and properties of sheath alloy for High-$T_c$ superconductor tape)

  • 박형상;지봉기;김중석;임준형;오승진;오승진;주진호;나완수;유재무
    • 한국전기전자재료학회논문지
    • /
    • 제13권8호
    • /
    • pp.711-717
    • /
    • 2000
  • Effect of alloying element additions to Ag on thermal conductivity electrical conductivity and mechanical properties of sheath materials for BSCCO tapes has been characterized. The thermal conductivity at low temperature range(10~300K) of Ag alloys were evaluated by both direct and indirect measurement techniques and compared with each other. It was observed that thermal conductivity decreased with increasing the content of alloying elements such as Au, Pd and Mg. Thermal conductivity of pure Ag at 30 K was measured to be 994.0 W/m.K on the other hand the corresponding values of A $g_{0.9995}$/M $g_{0.0005}$, A $g_{0.974}$/A $u_{0.025}$/M $g_{0.001}$, A $g_{0.973}$/Au.0.025//M $g_{0.002}$, and A $g_{0.92}$/P $d_{0.06}$/M $g_{0.02}$ were 342.6, 62.1, 59.2, 28.9 W/m.K respectively indicating 3 to 30 times lower than that of pure Ag. In addition alloying element additions to Ag improved mechanical strength while reduced elongation probably due to the strengthening mechanisms by the presence of additive atoms.s.

  • PDF

High-Temperature Deformation Behavior of Ti3Al Prepared by Mechanical Alloying and Hot Pressing

  • Han, Chang-Suk;Jin, Sung-Yooun;Kwon, Hyuk-Ku
    • 한국재료학회지
    • /
    • 제30권2호
    • /
    • pp.57-60
    • /
    • 2020
  • Titanium aluminides have attracted special interest as light-weight/high-temperature materials for structural applications. The major problem limiting practical use of these compounds is their poor ductility and formability. The powder metallurgy processing route has been an attractive alternative for such materials. A mixture of Ti and Al elemental powders was fabricated to a mechanical alloying process. The processed powder was hot pressed in a vacuum, and a fully densified compact with ultra-fine grain structure consisting of Ti3Al intermetallic compound was obtained. During the compressive deformation of the compact at 1173 K, typical dynamic recrystallization (DR), which introduces a certain extent of grain refinement, was observed. The compact had high density and consisted of an ultra-fine equiaxial grain structure. Average grain diameter was 1.5 ㎛. Typical TEM micrographs depicting the internal structure of the specimen deformed to 0.09 true strain are provided, in which it can be seen that many small recrystallized grains having no apparent dislocation structure are generated at grain boundaries where well-developed dislocations with high density are observed in the neighboring grains. The compact showed a large m-value such as 0.44 at 1173 K. Moreover, the grain structure remained equiaxed during deformation at this temperature. Therefore, the compressive deformation of the compact was presumed to progress by superplastic flow, primarily controlled by DR.

기계적 합금화법에 의해 제조된 Fe$_{0.98}$Mn$_{0.02}$Si$_2$의 상변태와 산화특성 (Phase Transformations and Oxidation Properties of Fe$_{0.98}$Mn$_{0.02}$Si$_2$ Processed by Mechanical Alloying)

  • 심웅식;이동복;어순철
    • 한국표면공학회지
    • /
    • 제36권2호
    • /
    • pp.200-205
    • /
    • 2003
  • Thermoelectric p-type $Fe_{0.98}$ $Mn_{ 0.02}$$Si_2$ bulk specimens have been produced by mechanical alloying and consolidation by vacuum hot pressing. The subsequent isothermal annealing was not able to fully transform the mestastable as -milled powders into the $\beta$ $-FeSi_2$ phase, so that the obtained matrix consisted of not only thermoelectric semiconducting $\beta$-FeSi$_2$ but also some residual, untransformed metallic $\alpha$ $- Fe_2$$Si_{ 5}$ and $\varepsilon$-FeSi mixtures. Interestingly, $\beta$ - $FeSi_2$ was more easily obtained in the low density specimen when compared to the high density specimen. The oxidation at 700 and $800^{\circ}C$ in air led to the phase transformation of the above described iron - silicides and the formation of a thin silica surface layer.

Effect of Fe Doping on Thermoelectric Properties of Mechanically Alloyed $CoSb_3$

  • Ur, Soon-Chul;Kwon, Joon-Chul;Kim, Il-Ho
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.957-958
    • /
    • 2006
  • Fe doped skutterudite $CoSb_3$ with a nominal composition of $Fe_xCo_{1-x}Sb_{12}(0{\leq}x{\leq}2.5)$ have been synthesized by mechanical alloying (MA) of elemental powders, followed by vacuum hot pressing. Phase transformations during mechanical alloying and vacuum hot pressing were systematically investigated using XRD. Single phase skutterudite was successfully produced by vacuum hot pressing using as-milled powders without subsequent annealing. However, second phase of $FeSb_2$ was found to exist in case of $x\geq2$, suggesting the solubility limit of Fe with Co in this system. Thermoelectric properties as functions of temperature and Fe contents were evaluated for the hot pressed specimens. Fe doping up to x=1.5 with Co in $Fe_xCo_{4-x}Sb_{12}$ appeared to increase thermoelectric figure of merit (ZT) and the maximum ZT was found to be 0.78 at 525K in this study.

  • PDF

Thermal Stability of Amorphous Ti-Cu-Ni-Sn Prepared by Mechanical Alloying

  • Oanha, N.T.H.;Choi, P.P.;Kim, J.S.;Kim, J.C.;Kwone, Y.S.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.953-954
    • /
    • 2006
  • Ti-Cu-Ni-Sn quaternary amorphous alloys of $Ti_{50}Cu_{32}Ni_{15}Sn_3$, $Ti_{50}Cu_{25}Ni_{20}Sn_5$, and $Ti_{50}Cu_{23}Ni_{20}Sn_7$ composition were prepared by mechanical alloying in a planetary high-energy ball-mill (AGO-2). The amorphization of all three alloys was found to set in after milling at 300rpm speed for 2h. A complete amorphization was observed for $Ti_{50}Cu_{32}Ni_{15}Sn_3$ and $Ti_{50}Cu_{25}Ni_{20}Sn_5$ after 30h and 20h of milling, respectively. Differential scanning calorimetry analyses revealed that the thermal stability increased in the order of $Ti_{50}Cu_{32}Ni_{15}Sn_3$, $Ti_{50}Cu_{25}Ni_{20}Sn_5$, and $Ti_{50}Cu_{23}Ni_{20}Sn_7$.

  • PDF