• Title/Summary/Keyword: Alloy composition

Search Result 747, Processing Time 0.029 seconds

Phase Change of Precipitates and Age Hardening in Rapidly Solidified Mg-Zn-Ca Base Alloys

  • Park Won-Wook;You Bong-Sun
    • Journal of Powder Materials
    • /
    • v.12 no.4 s.51
    • /
    • pp.303-308
    • /
    • 2005
  • Various kinds of Mg-Zn-Ca base alloys were rapidly quenched via melt spinning process. The meltspun ternary and quaternary alloy ribbons were heat-treated, and then the effects of additional elements on age hardening behavior and phase change of precipitates were investigated using Vickers hardness tester, XRD, and TEM equipped with EDS system. In ternary alloys, age hardening was mostly due to the distribution of $Mg_6Ca_2Zn_3$ and $Mg_2Ca$. The stable phases of precipitates were varied according to the aging temperature and the alloy composition. With the increase of Ca content, $Mg_2Ca$ precipitates were detected more than $Mg_6Ca_2Zn_3$ precipitates. In quaternary alloys, the precipitates taken from Mg-Zn-Ca-Co were identified as new quaternary phase, whereas those taken from Mg-Zn-Ca-Zr as MgZnCa containing Zr. In general, the ternary alloy showed higher peak hardness and thermal stability than the quaternary considering the total amounts of the solutes. It implies that the structure of precipitate should be controlled to have the coherent interface with the Mg matrix.

A Study on Synthesis of Ni-Ti-B Alloy by Mechanical Alloying from Elemental Component Powder

  • Kim, Jung Geun;Park, Yong Ho
    • Journal of Powder Materials
    • /
    • v.23 no.3
    • /
    • pp.202-206
    • /
    • 2016
  • A Ni-Ti-B alloy powder prepared by mechanical alloying (MA) of individual Ni, Ti, and B components is examined with the aim of elucidating the phase transitions and crystallization during heat treatment. Ti and B atoms penetrating into the Ni lattice result in a Ni (Ti, B) solid solution and an amorphous phase. Differential thermal analysis (DTA) reveals peaks related to the decomposition of the metastable Ni (Ti, B) solid solution and the separation of equilibrium $Ni_3Ti$, $TiB_2$, and ${\tau}-Ni_20Ti_3B_6$ phases. The exothermal effects in the DTA curves move to lower temperatures with increasing milling time. The formation of a $TiB_2$ phase by annealing indicates that the mechanochemical reaction of the Ni-Ti-B alloy does not comply with the alloy composition in the ternary phase diagram, and Ti-B bonds are found to be more preferable than Ni-B bonds.

Influences of Casting Conditions and Constituent Materials on the Production of Duo-castings (이중복합 주조체의 제조에 미치는 구성 재질과 주조 조건의 영향)

  • Jung, Jae-Young
    • Journal of Korea Foundry Society
    • /
    • v.38 no.1
    • /
    • pp.16-26
    • /
    • 2018
  • In this study, the effects of the pouring temperature, preheating temperature, surface condition and fraction of the wear resistant part on the production of duo-castings were investigated using a high Cr white cast iron with excellent abrasion resistance and a low Cr alloy steel with good toughness. The constituent materials of the duo-castings were designed to have high hardness, fracture toughness and abrasive wear resistance for the replacement of high Mn alloy steels with low abrasive wear resistance. In particular, the amount of abrasive wear of 17% Cr white cast iron was about 1/20 of that of high Mn alloy steel. There was an intermediate area of about 3mm due to local melting at the bonding interface of the duo-castings. These intermediate regions were different from those of the constituent materials in chemical composition and microstructure. This region led to fracture within the wear resistant part rather than at the bonding interface in the bending strength test. The bending fracture strengths were 516-824 MPa, which were equivalent to the bending proof strength of high Mn steel. The effects of various casting conditions on the duo-cast behavior were studied by simple pouring of low Cr alloy steel melt, but the results proved practically impossible to manufacture duo-castings with a sound bonding interface. However, the external heating method was suitable for the production of duo-castings with a sound bonding interface.

Computer-Aided Alloy Design of Insert Metal for Transient Liquid Phase Bonding of High Aluminum Ni-base Superalloys

  • Nishimotd, Kazutoshi;Saida, Kazuyoshi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.803-808
    • /
    • 2002
  • A computer-aided alloy-designing technique to develop the insert metal for transient liquid phase (TLP) bonding was applied to high aluminum Ni-base superalloys. The main procedure of a mathematical programming method was to obtain the optimal chemical composition through rationally compromising the plural objective performances of insert metal by a grid-search which involved data estimation from the limited experimental data using interpolation method. The objective function Z which was introduced as an index of bonding performance of insert metal involved the melting point, hardness (strength), formability of brittle phases and void ratio (bonding defects) in bond layer as the evaluating factors. The contour maps of objective function Z were also obtained applying the interpolation method. The compositions of Ni-3.0%Cr-4.0%B-0.5%Ce (for ${\gamma}$/${\gamma}$/${\beta}$ type alloy) and Ni3.5%Cr-3.5%B-3%Ti (for ${\gamma}$/${\gamma}$ type alloy) which optimized the objective function were determined as insert metal. SEM observations revealed that the microstructure in bond layers using the newly developed insert metals indicated quite sound morphologies without forming microconstituents and voids. The creep rupture properties of both joints were much improved compared to a commercial insert metal of MBF-80 (Ni-15.5%Cr-3.7%B), and were fairly comparable to those of base metals.

  • PDF

Effects of Composition on Magnetic Hyperfine Field of Acicular Fe-Co Alloy Particles (침상형 Fe-Co 합금입자에서 조성이 초미세자기장에 미치는 효과)

  • 박재윤;박용환
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 1998
  • Acicular Fe-Co alloy particles are one of the candidates for high-density magnetic recording media. We examined the effects of Co additions on the magnetic properties of Fe-Co alloy particles by using M$\'{o}$ssbauer spectroscopy, TEM, and X-ray diffraction. Acicular $Fe_n$Co (n=5, 4, 3, 2) alloy particles coated with silica, were prepared by a chemical coprecipitation method and subsequent H $_2$ reduction. The crystal structure was found to be cubic in all n ranges. The lattice constant $a_0$ decreases with increasing Co contents. Analysis of $^{57}Fe$ M\'{o}$ssbauer effect data in terms of the local configurations of Co atoms has permitted the influence of magnetic hyperfine interactions to be monitored.

  • PDF

A Study on RF High Power Durability of Al-Cu Alloy Electrodes Used in Ladder-type SAW(surface acoustic wave) Filters (Al-Cu 합금 전극막 구조를 갖는 사다리형 SAW filter의 RF-고전력 내구성 특성 고찰)

  • 김남철;이기선;서수정;김지수;김윤동
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.5
    • /
    • pp.435-443
    • /
    • 2001
  • As power durable RF SAW filters, AL-(0∼2wt%)Cu alloy multi-layered thin electrodes were deposited on 42° LiTaO$_3$ piezoelectric substrates by magnetron sputtering process, and then ladder-type RF SAW filters, satisfying the electrical specification of CDMA transmission band, were fabricated through optimizing SAW resonator structures. The temperature of film electrodes in SAW filter was increased with RF power, and reached the maxima to cause a failure of SAW filters at the cut-off frequencies of the RF filter band. As RF power increases, the electrodes of Al-Cu alloy showed higher power durability than that of pure Al. The multi-layer laminated film of Al-1wt.% Cu/Cu/Al-1wt%Cu resulted in the best power durability up to 4W of RF power. Every film electrode, however, was destroyed within seconds whenever applying a critical RF power to SAW filters, regardless of the composition and structure of film electrodes. The breakdown of film electrodes under FR power seems to believe due to the fatigue of electrodes caused by repetitive cyclic stress of surface acoustic wave, which is amplified as RF power increases.

  • PDF

Mutual Solubility of Mn and Fe in AZ91 Alloy Melts and Its Application to Composition Control of AZ91D Recycled Ingots (AZ91 합금 용탕내 Mn과 Fe의 상호용해도 측정 및 AZ91D 재생지금의 성분조정에의 활용)

  • Kwon, Soon-Il;Byun, Ji-Young;Kim, Seon-Jin;Shim, Jae-Dong
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.619-624
    • /
    • 2003
  • This paper describes a method to control Mn and Fe contents in recycled AZ91D ingots, based on the mutual solubility of Mn and Fe in AZ91 alloy melts. For this purpose, Fe solubility with the change of Mn content and temperature was investigated in the homogenized and re-precipitated liquid AZ91 alloy. The increase of the amount of Mn added to the melt resulted in the decrease of Fe content. The data obtained in this study was adopted to the pilot plant for recycling of the scrap. As a result, Mn and Fe contents measured in the recycled ingot were in good agreement with ASTM B93 standard.

Textures of Fe-Ni Alloy Thin Films Fabricated by Sputtering Method (스퍼터링 방법에 의한 Fe-Ni 합금 박막의 집합조직)

  • 박용범;임태흥
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.2
    • /
    • pp.201-206
    • /
    • 2001
  • The evolution of textures in Fe-Ni alloy thin films fabricated by PVD using a sputtering method was investigated with parameters such as deposition time and chemical composition. The textures of the as-deposited films were characterized by fibre-type. In Invar alloy(Fe-36.5 wt%Ni) thin film, the <110>//ND fibre texture as a starting component changed to the <210>//ND fibre texture with increasing deposition time. In Permalloy(Fe-81 wt%Ni) thin film, a mixture of the <221>//ND and <311>//ND fibres developed at the early stage of deposition, and then transformed to the <210>//ND fibre with increasing deposition time. These texture changes were discussed in terms of relationship with the microstructural evolution of the films.

  • PDF

An analysis of the Wi-Ni Carbide Alloy Diffusion Bonding technique in its application for DME Engine Fuel Pump

  • Chun, Dong-Joon
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.246-251
    • /
    • 2020
  • Dimethyl Ether(DME) engine use a highly efficient alternative fuel having a great quantity of oxygen and has a advantage no polluting PM gas. The existing DME fuel cam material is a highly expensive carbide alloy, and it is difficult to take a price advantage. Therefore the study of replacing body area with inexpensive steel material excluding piston shoe and contact area which demands high characteristics is needed. The development of WC-Ni base carbide alloy optimal bonding composition technique was accomplished in this study. To check out the influence of bonding temperature and time, bonding characteristics of sintering temperature was experimented. The hardness of specimen and bonding rate were measured using ultrasound equipment. The bonding state of each condition was excellent, and the thickness of mid-layer, temperature and maintaining time were measured. The mid-layer thickness according to bonding temperature and maintaining time were observed with optical microscope. We analyzed the micro-structural analysis, formation of bonding specimen, wafer fabrication and fuel cam abrasion test. Throughout this study, we confirmed that the fuel cam for DME engine which demands high durability against velocity and pressure is excellent.

Formation of Cerium Conversion Coatings on AZ31 Magnesium Alloy

  • Fazal, Basit Raza;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.1
    • /
    • pp.1-13
    • /
    • 2016
  • This review deals with one of the surface modification techniques, chemical conversion coating and particularly cerium-based conversion coatings (CeCC) as a promising substitute for chromium and phosphate conversion coating on magnesium and its alloys. The CeCCs are commonly considered environmentally friendly. The effects of surface preparation, coating thickness, bath composition, and e-paint on the corrosion behavior of CeCCs have been studied on the AZ31 magnesium alloy. This review also correlates the coating microstructural, morphological, and chemical characteristics with the processing parameters and corrosion protection. Results showed that the as-deposited coating system consists of a three layer structure (1) a nanocrystalline MgO transition layer in contact with the Mg substrate, (2) a nanocrystalline CeCC layer, and (3) an outer amorphous CeCC layer. The nanocrystalline CeCC layer thickness is a function of immersion time and cerium salt used. The overall corrosion protection was crucially dependent on the presence of coating defects. The corrosion resistance of AZ31 magnesium alloy was better for thinner CeCCs, which can be explained by the presence of fewer and smaller cracks. On the other hand, maximum corrosion protection was achieved when AZ31 magnesium samples with thin CeCCs are e-painted. The e-paint layer further restricts and hinders the movement of chloride and other aggressive ions present in the environment from reaching the magnesium surface.