• Title/Summary/Keyword: Alloy Powders

Search Result 454, Processing Time 0.023 seconds

The Effect of Milling Conditions on Microstructure and Phase Transformation Behavior of Ti-Ni Based Alloy Powders (Ti-Ni계 합금분말의 미세조직 및 상변태거동에 미치는 밀링조건의 영향)

  • 강상호;남태현
    • Journal of Powder Materials
    • /
    • v.8 no.1
    • /
    • pp.42-49
    • /
    • 2001
  • Ti-50Ni(at%) and Ti-40Ni-10Cu(at%) alloy powders have been fabricated by ball milling method, and their microstructure and phase transformation behavior were investigated by means of scanning electron microscopy/energy dispersive spectrometry, differential scanning calorimetry (DSC), X-ray diffractions and transmission electron microscopy. In order to investigate the effect of ball milling conditions on transformation behavior, ball milling speed and time were varied. Ti-50Ni alloy powders fabricated with the milling speed more than 250 rpm were amorphous, while those done with the milling speed of 100rpm were crystalline. In contrast to Ti-50Ni alloy powders, Ti-40Ni-10Cu alloy powders were crystalline, irrespective of ball milling conditions. DSC peaks corresponding to martensitic transformation were almost discernable in alloy powders fabricated with the milling speed more than 250 rpm, while those were seen clearly in alloy powders fabricated with the milling speed of 100 rpm. This was attributed to the fact that a strain energy introduced during ball milling suppressed martensitic transformation.

  • PDF

Microstructure and Magnetic Properties of Nanostructured Fe-Co Alloy Powders Produced by Chemical Solution Mixing and Hydrogen Reduction Methods (화학용액혼합과 수소환원법으로 제조된 나노 구조 Fe-Co 합금분말의 미세구조 및 자성 특성)

  • 박현우;이백희;이규환;김영도
    • Journal of Powder Materials
    • /
    • v.10 no.5
    • /
    • pp.333-336
    • /
    • 2003
  • The purpose of this study is the fabrication of nano-sized Fe-Co alloy powders with soft magnetic properties by the slurry mixing and hydrogen reduction (SMHR) process. $FeCl_2$0 and $CoCl_2$ powders with 99.9% purities were used for synthesizing nanostructured Fe-Co alloy powder. Nano-sized Fe-Co alloy powders were successfully fabricated using SMHR, which was performed at 50$0^{\circ}C$ for 1 h in H$_2$ atmosphere. The fabricated Fe-Co alloy powders showed $\alpha$' phase (ordered body centered cubic) with the average particle size of 45 nm. The SMHR powder exhibited low coercivity force of 32.5 Oe and saturation magnetization of 214 emu/g.

THE MAGNETIC SEPARATION OF Nd-Fe-B POWDERS

  • Cui, Li-Ya;Zheng, Da-Li;Zhu, Jing-Han;Zhao, Wei-Hong;Ding, Shu-Lin
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.672-678
    • /
    • 1995
  • The magnetic separation of Nd-Fe-B powders prepared by melt-spun and HDDR processes was investigated. The experiments show that the ununiform melt-spun powders can be separated into various standards by means of magnetic separation method. The magnetic powders with higher properties were obtained by the use of suitable separating field. For example, the properties of ununiform melt-spun powders are Br=7.95 kG, iHc=9.93 kOe and (BH)max=10.2 MGOe before separating. Through separating in different magnetic fields, the powders obtained with a separating field of 780 Oe has the optimum properties of Br=7.7 kG, iHc=11.0 kOe and (BH)max=15.3 MGOe. The magnetic properties of the HDDR magnetic powder are hardly separated by the magnetic separation method.

  • PDF

Phase Changes and Microstructural Properties of Ti Alloy Powders Produced by using Attrition Milling Method (어트리션 밀링법으로 제조된 티타늄합금의 상변화 및 미세조직특성)

  • Cha, Sung-Soo
    • Journal of Technologic Dentistry
    • /
    • v.23 no.1
    • /
    • pp.9-19
    • /
    • 2001
  • Microstructure and phase transformation of Ti-Ni-Cu alloy powders produced by using attrition milling method were studied. Mixed powders of Ti-(50-X)Ni-XCu ($X=0{\sim}20$ at%) in composition range were mechanically alloyed for maximum 20 hours by using SUS 1/4" ball in argon atmosphere. Ball to powder ratio was 50: 1 and impeller speed was 350rpm. Mechanically alloyed with attrition millimg method. powder was heat treated at the temperature up to $850^{\circ}C$ for 1 hour in the $10^{-6}$ torr vacuum. Ti-Ni-Cu alloy powders have been fabricated by attrition milling method. and then phase transformation behaviours and microstructual properties of the alloy powders were investigated to assist in improving the the high damping capacity of Ti-Ni-Cu shape memory alloy powders. The results obtained are as follows: 1. After heat treating of fully mechanically alloyed powder at $850^{\circ}C$ for 1hour. most of the B2 and B 19' phases was formed and $TiNi_3$ were coexisted. 2. The B 19' martensite were formed in Ti-Ni-Cu alloy powders whose Cu-content is less than 5a/o. where as the B19 martensite in those whose Cu-content is more than 10at%. 3. The powders of as-milled Ti-Ni-Cu alloys whose Cu-contents is less than 5at% are amorphous. whereas those of as-milled Ti-Ni-Cu alloys whose Cu-content is more than 10at% are crystalline. This means that Cu addition tends to suppress amorphization of Ti-Ni alloy powders.

  • PDF

Chemical Solution Mixing and Hydrogen Reduction Method for Fabrication of Nanostructured Fe-Co Alloy Powders (화학용액 혼합과 수소환원법을 이용한 나노구조 Fe-Co 합금분말의 제조)

  • 박광현;박현우;이백희;장시영;이정근;김영도
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.137-142
    • /
    • 2004
  • In this study, chemical solution mixing and hydrogen reduction method was used to fabricate nanostructured $Fe_xCo_{1-x}$ alloy powders. Fe-Co chloride mixture, FeCl$_2$ and COCI$_2$ with 99.9% purity, were reduced in hydrogen atmosphere. Nanostructured Fe-Co alloy powders with a grain size of 50 nm were successfully fabricated. Magnetic properties of fabricated $Fe_xCo_{1-x}$(x=0, 10, 30, 50, 70, 100) alloy powders with the same grain size were measured because size factor can affect magnetic properties. Coercivity of Fe-Co alloy powders were increased with increasing Co contents. Maximum value of coercivity in various Co contented Fe-Co alloy powders with similar grain size was 125 Oe at Fe$_{100}$. Saturation magnetization value at Fe$_{70}$Co$_{30}$ composition showed maximum value of 219 emu/g and saturation magnetization value decreased with increasing Co contents and minimum value of 155 emu/g was observed at Co$_{100}$.

Microstructure and Hardness of TiC Particle-reinforced Fe Self-fluxing Alloy Powders Based Hybrid Composite Prepared by High Energy Ball Milling

  • Park, Sung-Jin;Song, Yo-Seung;Nam, Ki-Seok;Chang, Si-Young
    • Journal of Powder Materials
    • /
    • v.19 no.2
    • /
    • pp.122-126
    • /
    • 2012
  • The Fe-based self-fluxing alloy powders and TiC particles were ball-milled and subsequently compacted and sintered at various temperatures, resulting in the TiC particle-reinforced Fe self-fluxing alloy hybrid composite, and the microstructure and micro-hardness were investigated. The initial Fe-based self-fluxing alloy powders and TiC particles showed the spherical shape with a mean size of approximately 80 ${\mu}m$ and the irregular shape of less than 5 ${\mu}m$, respectively. After ball-milling at 800 rpm for 5 h, the powder mixture of Fe-based self-fluxing alloy powders and TiC particles formed into the agglomerated powders with the size of approximately 10 ${\mu}m$ that was composed of the nanosized TiC particles and nano-sized alloy particles. The TiC particle-reinforced Fe-based self-fluxing alloy hybrid composite sintered at 1173 K revealed a much denser microstructure and higher micro-hardness than that sintered at 1073 K and 1273 K.

Characteristics of Ti-Ni-(XCu) Shape Memory Alloy Powders made by Gas Atomization Process (가스 분무법으로 제조한 Ti-Ni-XCu 형상기억합금분말의 특성)

  • 징동훈
    • Journal of Powder Materials
    • /
    • v.6 no.2
    • /
    • pp.171-177
    • /
    • 1999
  • Ti-45.2at.%Ni-5at.%Cu and Ti-40.2at.%Ni-10atat.%Cu alloy powders were fabricated by gas atomization process. The microstructures, Shape, hardness and phase transformation behaviors of the powders were investigated by means of optical microscopy, scanning electron microscopy, micro-hardness measurement, x-ray diffraction analyses and differential scanning calorimetry. The hardness of the Ti-Ni-XCu alloy powders decreased as Cu-content increased. The x-ray diffraction analyses were carried out for powders without heat treatment, and those that treated at 85$0^{\circ}C$ for an hour in a vaccum state($10^5$ torr) and then quenched into ice water. The intensity of B$19^t$ phase increased with heat treating. The monoclinic B$19^t$ martensite was formed in the Ti-Ni-XCu alloy powders during cooling.

  • PDF

Mechanical Properties of Rapidly Solidified Al-Ni-Mm Alloy Powders Consolidated by Extrusion (급속응고 Al-Ni-Mm 합금분말 압출재의 기계적 성질)

  • 김형섭
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.100-103
    • /
    • 1998
  • In this study, Al-Ni-Mm alloy has been produced by a gas atomization technique and consolidated by a powder extrusion method. The powders showed mixed structures of amorphous, fcc-Al phases and intermetallics. Each phase shows different size and quantity with different size of the powders due to the higher cooling rate of the finer powders. Because of the difference of the microstructure, the powders with the different size show differences of the mechanical properites of the powders and extrudates.

  • PDF

The effect of Sc on the properties of Al-Si alloy Powders fabricated by Gas Atomization and Their extruded bars (Sc첨가가 가스분무법 으로 제조된 Al-Si합금 분말 및 압출재의 특성에 미치는 효과)

  • Lee, Woo-Ram;Kim, Ji-Hoon;Goo, Ja-Myoung;Kim, Jun-Ro;Lee, Tae-Haeng;Hong, Soon-Jik
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.455-458
    • /
    • 2009
  • In this research, the effect of Sc on the micro structure and mechanical properties of Al-20Si alloy powders and their extruded bar was investigated. The Al-20wt%Si and Al-20wt%Si-0.6wr%Sc powders were produced by gas atomization. The micro structures of the alloy powders and extrude was examined by optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The alloy powders were subsequently canned, degassed and extruded in order to produce the alloy bulk. It was found that the micro structure of the Al-20Si alloy powder was refined and the mechanical properties was significantly improved by the addition of 0.6Sc.

  • PDF

Characteristics of the Hard-Overlayers by WC-12%Co Powder Addition in MIG Welding of Al Alloy (Al 합금의 MIG 용접에서 WC-12%Co 분말에 첨가에 의한 경화육성층의 특성)

  • 박정식;양병모;박경채
    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.102-107
    • /
    • 2000
  • It was attempted to improve the wear resistance of Al alloy under the load condition by making a formation of the thick surface hardening alloy layers. The thick surface hardening alloy layers were formed on 6061 Al alloys overlayed by MIG welding process with WC-12%Co powder addition. Effects of the dispersion of WE-12%Co powders on hardness and wear characteristics of alloys were investigated. The following results were obtained. Most of WE-12%Co powders are dispersed nearly uniform as unmelted particles in the matrix alloy. A part of WC-12%Co powders are melted in the molten pool, and during solidification {TEX}$Al_{9}Co_{2}${/TEX} appeared. With increasing addition of WC-12%Co powders, the hardness and specific wear resistance of the overlay weld alloys increased and reached Hv450 at WC-12%Co powder addition rate of 54g/min. It is considered that excellent wear resistance of the overlayed alloys was due to dispersed WC-12%Co powders and increased 10 times at WC-12%Co powder addition rate of 54 g/min than that of the WC-free overlaying layers.

  • PDF