• Title/Summary/Keyword: Alloy 690TT

Search Result 8, Processing Time 0.022 seconds

고온의 염기성 수용액에서 Ni기 합금의 응력부식파괴

  • 김홍표;황성식;국일현;김정수
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.84-89
    • /
    • 1998
  • Alloy 600 및 alloy 690과 Ni-8Cr-lOFe 합금 등의 응력부식(stress corrosion cracking, SCC) 거동을 고온의 염기성 분위기에서 C-ring 시편을 사용하여 연구하였다. Alloy 600과 alloy 690을 여러 조건에서 열처리하여 etching한 후 탄화물의 분포와 입계 주변의 Cr고갈 정도 등의 미세조직을 광학현미경과 주사 전자현미경(SEM)으로 관찰하였다. 이들 재료에 대한 SCC 시험을 315$^{\circ}C$의 40% NaOH 수용액에서 일정한 부하전위(부식전위 + 200㎷)를 가하면서 수행하였으며, 동일 조건에서의 분극거동도 측정하였다. Alloy 600 MA(mill anneal) 및 TT(thermal treatment)의 SCC 저항성은 alloy 690 TT와 Ni-8Cr-10Fe SA(solution anneal)보다 낮았다. Alloy 600 TT 재료는 alloy 600 MA 및 SA 재료에 비해 SCC 저항성이 더 컸다. 고용 탄소농도는 alloy 600의 SCC 저항성에 큰 영향을 주지 못했다. 대부분의 Alloy 600은 균열전파 입계균열을 보였으나, 일부에서는 입계 및 입내 혼합양상(mixed mode cracking)을 보였다. 염기성 분위기에서 Ni기 합금의 SCC 거동을 미세조직, 분극거동의 관점에서 고찰하였다.

  • PDF

Evaluation of Tensile Properties of Alloy 690TT Steam Generator Tube at Room Temperature and 343℃ (상온과 343℃에서 Alloy 690TT 증기발생기 전열관의 인장물성치 평가)

  • Eom, Ki Hyeon;Kim, Jin Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.655-662
    • /
    • 2014
  • This study conducted tensile tests on an Alloy 690TT tube at room temperature (RT) and at $343^{\circ}C$ using tube- and ring-type specimens to investigate the stress-strain behavior and tensile properties of a steam generator (SG) tube in the axial and circumferential directions at RT and at the design temperature of a nuclear power plant (NPP). The results of the axial tensile test showed that yield point phenomena appeared at both RT and $343^{\circ}C$, and serrated flow in the stress-strain curve appeared at $343^{\circ}C$. Yield and tensile strengths for both directions were clearly lower at $343^{\circ}C$ compared to RT; however, the elongations were approximately the same at both test temperatures. Regardless of the test temperature, the strengths in the circumferential direction were lower by approximately 5~10 % than those in the axial direction. In addition, the test data revealed that the reduction in the yield and tensile strengths of the Alloy 690TT SG tube with the test temperature was more significant than that estimated by the temperature correction factor of ASME Sec.II.

Stress Corrosion Cracking of Alloys 600, 690, and 800 in a Tetrathionate Solution at $340^{\circ}C$

  • Lee, Eun-Hee;Kim, Kyung-Mo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.587-588
    • /
    • 2006
  • The stress corrosion cracking (SCC) susceptibility of Alloy 600 MA, Alloy 600 TT, Alloy 800, and Alloy 690 TT were investigated in a deaerated 0.01 M solution of sodium tetrathionate using reverse u-bend test samples at $340^{\circ}C$. The results showed that SCC occurred in all alloys, excluding Alloy 690 TT. The SCC susceptibility decreased with an increase in the chromium content of the alloys. The results of the deposits and spectra taken from an energy dispersive X-ray system confirmed the existence of a reduced sulfur causing SCC.

  • PDF

Effects of Plastic Deformation on Surface Properties and Microstructure of Alloy 690TT Steam Generator Tube (증기발생기 전열관 Alloy 690TT의 소성변형이 표면특성 및 미세조직에 미치는 영향)

  • Soon-Hyeok Jeon;Ji-Young Han;Hee-Sang Shim;Sung-Woo Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.20 no.1
    • /
    • pp.16-24
    • /
    • 2024
  • Denting of steam generator (SG) tube is defined as the reduction in tube diameter due to the stresses exerted by the corrosion products formed on the outer diameter surface. This phenomenon is mostly observed in the crevices between SG tube and the top-of tubesheet or tube support plate. Despite the replacement of SG tube with Alloy 690, which has better corrosion resistance than Alloy 600, the denting of SG tube still remains a potential problem that could decrease the SG integrity. Deformation of SG tube by denting phenomenon can affect the surface properties and microstructure of SG tube. In this study, the effects of plastic deformation on surface properties and microstructure of Alloy 690 thermally treated (TT) tube was investigated by using the various analysis techniques. The plastic deformation of Alloy 690 increased the surface roughness and area. Many surface defects such as ripped surface and micro-cracks were observed on the deformed Alloy 690TT specimen. Based on the electron backscatter diffraction analysis, the dislocation density of deformed SG tube increased compared to non-deformed SG tube. In addition, the effects of changes in surface properties and microstructure of SG tube on general corrosion behavior were discussed.

Stress Corrosion Cracking Behavior of Alloy 690 in Crevice Environment (Pb + S + Cl) in a Steam Generator Tube (증기발생기 전열관 틈새복합환경(Pb+S+Cl)에서 Alloy 690의 응력부식균열거동)

  • Shin, Jung-Ho;Lim, Sang-Yeop;Kim, Dong-Jin
    • Corrosion Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.116-122
    • /
    • 2018
  • The secondary coolant of a nuclear power plant has small amounts of various impurities (S, Pb, and Cl, etc.) introduced during the initial construction, maintenance, and normal operation. While the concentration of impurities in the feed water is very low, the flow of the cooling water is restricted, so impurities can accumulate on the Top of Tubesheet (TTS). This environment is chemically very complicated and has a very wide range of pH from acidic to alkaline. In this study, the characteristics of the oxide and the mechanism of stress corrosion cracking (SCC) are investigated for Alloy 690 TT in alkaline solution containing Pb, Cl, and S. Reverse U-bend (RUB) specimens were used to evaluate the SCC resistance. The test solution comprises 3m NaCl + 500ppm Pb + 0.31m $Na_2SO_4$ + 0.45m NaOH. Experimental results show that Alloy 690 TT of the crevice environment containing Pb, S, and Cl has significant cracks, indicating that Alloy 690 is vulnerable to stress corrosion cracking under this environment.

고온 염기성 수용액에서 $TiO_2$가 Alloy 600과 Alloy 690의 응력부식파괴에 미치는 영향

  • 김경모;김홍표;이창규;국일현;김우철
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.78-83
    • /
    • 1998
  • Alloy 600과 Alloy 690의 응력부식파괴(Stress corrosion cracking, SCC)에 미치는 TiO$_2$의 영향을 315$^{\circ}C$의 10%NaOH 수용액에서 RUB(reverse U-bend) 시편, C-Ring 시편과 CT(compact tension)시편을 사용하여 평가하였다. 시편은 alloy 600 MA(mill anneal), alloy 600 TT(thermal treatment) 그리고 alloy 690 TT로 제작하였다. SCC 시험은 탈산된 10%NaOH 수용액에 2 g/1 TiO$_2$를 첨가한 용액과 첨가하지 않은 용액에서 수행하였으며, 이 조건에서 분극곡선도 얻었다. SCC 시험시 시편을 부식전위로부터 +150 ㎷ 양극분극을 가하였다. 기준전극으로 external Ag/AgCl electrode를 사용하였다. Alloy 600 MA로 제작한 RUB 시편은 TiO$_2$가 없는 용액에서 5일 안에 벽 관통 균열을 보였으나 TiO$_2$가 첨가된 용액에서는 균열을 관찰할 수 없었다. TiO$_2$가 첨가됨에 따라 alloy 600과 alloy 690의 임계전류밀도는 크게 감소하였고 또한 부동태 전류밀도도 감소하였다. 부동테 영역에서 TiO$_2$가 있는 용액의 경우 여러 peak가 있는 반면에 TiO$_2$가 없는 용액은 peak가 뚜렷하지 않았다. 이런 결과는 TiO$_2$가 첨가점에 따라 active region에서도 안정한 부동태 피막이 존재한다는 것을 시사한다. 또한 TiO$_2$가 없는 경우 SCC가 잘 일어나는 영역에 존재하는 부동태 피막이 TiO$_2$ 첨가에 따라 repassivation kinetics 등의 성질이 변화한 것으로 판단된다.

  • PDF

SCC Mechanism of Ni Base Alloys in Lead Contaminated Water

  • Hwang, Seong Sik;Kim, Dong Jin;Lim, Yun Soo;Kim, Joung Soo;Park, Jangyul;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.187-191
    • /
    • 2008
  • Transgranular stress corrosion cracking of nickel base alloys was reported by Copson and Dean in 1965. Study to establish this cracking mechanism needs to be carried out. Laboratory stress corrosion tests were performed for mill annealed(MA) or thermally treated(TT) steam generator tubing materials in a high temperature water containing lead. An electrochemical interaction of lead with the alloying elements of SG tubings was also investigated. Alloy 690 TT showed a transgranular stress corrosion cracking in a 40% NaOH solution with 5000 ppm of lead, while intergranular stress corrosion racking was observed in a 10% NaOH solution with 100 ppm lead. Lead seems to enhance the disruption of passive film and anodic dissolution of alloy 600 and alloy 690. Crack tip blunting at grain boundary carbides plays a role for the transgranular stress corrosion cracking.

Stress Corrosion Cracking of Alloy 600 and Alloy 690 in Caustic Solution

  • Kim, Hong Pyo;Lim, Yun Soo;Kim, Joung Soo
    • Corrosion Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.82-87
    • /
    • 2003
  • Stress corrosion cracking of Alloy 600 and Alloy 690 has been studied with a C-ring specimen in 1%, 10% and 40% NaOH at $315^{\circ}C$. SCC test was performed at 200 mV above corrosion potential. Initial stress on the apex of C-ring specimen was varied from 300 MPa to 565 MPa. Materials were heat treated at various temperatures. SCC resistance of Ni-$_\chi$Cr-10Fe alloy increased as the Cr content of the alloy increased if the density of an intergranular carbide were comparable. SCC resistance of Alloy 600 increased in caustic solution as the product of coverage of an intergranular carbide in grain boundary, intergranular carbide thickness and Cr concentration at grain boundary increased. Low temperature mill annealed Alloy 600 with small grain size and without intergranular carbide was most susceptible to SCC. TT Alloy 690 was most resistant to SCC due to the high value of the product of coverage of an intergranular carbide in grain boundary, intergranular carbide thickness and Cr concentration at grain boundary. Dependency of SCC rate on stress and NaOH concentration was obtained.