• 제목/요약/키워드: Allowable limit

검색결과 324건 처리시간 0.029초

대기중(大氣中) 배출(排出)된 일산화탄소(一酸化炭素)와 아황산(亞黃酸)가스의 지속시간(持續時間) (On Effluent Concentration and Time of Fading Out of Carbon Monoxide and Sulful Dioxide in Atmosphere)

  • 김두희
    • Journal of Preventive Medicine and Public Health
    • /
    • 제7권2호
    • /
    • pp.373-375
    • /
    • 1974
  • 일산화(一酸化) 탄소(炭素)에 대한 피해와 대기오염(大氣汚染) 기준을 아황산(亞黃酸)까스를 기준으로 한다는 데의 관심을 가지고 가정에서 많이 사용하고 인는 연탄을 중심으로 관찰한 결과 CO는 연소온도와 비례하나 $SO_2$는 비례하지 않으며 일단 발생된 CO는 적어도 24시간(時間) 이내에는 변화가 거의 없으며 비교적 장시간 유지한다. $SO_2$는 대기중에서 곧 변화를 일으켜 ($H_{2}SO_{4}$로 전환) 30분이내에 극소량으로 되므로 대기중의 황화물 측정은 $SO_2$보다 유황자체나 $H_{2}SO_{4}$를 측정함이 더욱 효과적이라 하겠다.

  • PDF

두 점 집기 작업 시 손가락 관절토크의 역학적 해석 (Dynamic Analysis of Finger Joint Torque for Tip Pinch Task)

  • 김윤정;정광훈;이계한;이수진
    • 한국정밀공학회지
    • /
    • 제28권6호
    • /
    • pp.657-682
    • /
    • 2011
  • This paper presents the dynamic analysis on the joint torque of a finger for the tip pinch task. The dynamic model on finger movement was developed in order to predict the joint torques of an index finger, and the finger was assumed as a three-link planar manipulator. Analysis of the model revealed that the joint stiffness was one of the most important parameters affecting the joint torque. The stiffness of the finger joint was experimentally measured, and it was used in analyzing the finger joint torque required for performing the tip pinch task. The obtained joint torque for the tip pinch task will be used as the design requirements of the finger exoskeletal orthosis actuated by the polymer actuator whose allowable torque limit is relatively low compared to that of a mechanical actuator.

CFD 유동해석을 이용한 누설 저감을 위한 증기터빈용 플렉시블 패킹링 개발 (Development of Flexible Packing Ring in Steam Turbine for Reduction of Leakage by using CFD Flow Analysis)

  • 김진형;배준호;이창렬;김철
    • 한국정밀공학회지
    • /
    • 제30권7호
    • /
    • pp.741-748
    • /
    • 2013
  • A conventional packing ring was designed with a large clearance to prevent damage due to the vibration of the rotor, which can lead to an increase in steam leakage. In this study, a flexible packing ring using winding springs was developed to prevent damage to the rotor teeth by minimizing vibration, while maintaining a smaller clearance than that of conventional rotor designs. Theoretical analysis and finite element analysis (FEA) were used to design the winding spring to satisfy the specified allowable stress limit and minimum load requirements. The shape of the winding spring was designed by applying curves to the center and end parts of a flat spring. Computational fluid dynamics (CFD) analysis was used to predict the leakage of the flexible packing ring. Flow rate measurement tests were performed to verify the leakage reduction efficiency and the reliability of the CFD analysis.

PMMA Lens의 변형에 미치는 설계변수와 금형온도의 영향 (Effect of Design Parameters and Molding Temperature on Polymethyl Methacrylate Lens Warp)

  • 이선호;허장욱
    • 한국기계가공학회지
    • /
    • 제15권5호
    • /
    • pp.109-116
    • /
    • 2016
  • Polymethyl methacrylate is commonly used in the outer lens of automotive rear lamps. However, if the lens warps above the allowable limit, it may lead to faulty connection with the housing, and failure of the assembly. This study investigated the effects of gate diameter and cooling line distance in the mold design for automotive outer lens. The optimal gate diameter and cooling line distance to minimize the warp of the outer lens were derived as 3.0 mm and 50-60 mm respectively, and the cooling temperature to minimize warp was shown to be $60-80^{\circ}C$ (mold surface temperature $48-67^{\circ}C$). A higher cooling temperature may somewhat mitigate the warp, but is undesirable because it may cause injection molding problems, such as sinks. A mold was constructed matching the optimal design and the produced lens properties, particularly the degree of warp, were comparable with the CAE predictions.

Topological Derivative를 이용한 선형 구조물의 레벨셋 기반 형상 최적 설계 (Level Set Based Shape Optimization of Linear Structures Using Topological Derivatives)

  • 하승현;김민근;조선호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.299-306
    • /
    • 2006
  • Using a level set method and topological derivatives, a topological shape optimization method that is independent of an initial design is developed for linearly elastic structures. In the level set method, the initial domain is kept fixed and its boundary is represented by an implicit moving boundary embedded in the level set function, which facilitates to handle complicated topological shape changes. The 'Hamilton-Jacobi (H-J)' equation and computationally robust numerical technique of 'up-wind scheme' lead the initial implicit boundary to an optimal one according to the normal velocity field while minimizing the objective function of compliance and satisfying the constraint of allowable volume. Based on the asymptotic regularization concept, the topological derivative is considered as the limit of shape derivative as the radius of hole approaches to zero. The required velocity field to update the H -J equation is determined from the descent direction of Lagrangian derived from optimality conditions. It turns out that the initial holes is not required to get the optimal result since the developed method can create holes whenever and wherever necessary using indicators obtained from the topological derivatives. It is demonstrated that the proper choice of control parameters for nucleation is crucial for efficient optimization process.

  • PDF

가속도가 포함된 순간최적제어 알고리듬을 이용한 구조물 진동의 능동제어 (Active Control of Structural Vibration Using An Instantaneous Control Algorithm including Acceleration Feedback)

  • 문석준;정태영
    • 소음진동
    • /
    • 제6권2호
    • /
    • pp.215-224
    • /
    • 1996
  • Active vibration control is generally used to reduce vibration level by the actuators based on measured signal. Dynamic properties of a structure can be easily modified by the active vibration control, so that the vibration level may be effectively reduced to the magnitude below the allowable limit over a wide frequency rangs. In this paper, an instantaneous optimal control algorithm including acceleration feedback is presented for the active vibration control of large structures considering facts that the acceleration response can be easily measured, but the displacement and velocity response are obtained by numerically integrating the measured acceleration response with some errors. The adverse effect of the time delay is overcomed by taking into account the dynamic characteristics of an actuator and filters in the design of controller. Performance test is carried out using a hydraulic active mass driver on a test structure$(L{\times}W{\times}H;=;1200mm{\times}800mm{\times}1600mm, about;500kg)$ supported by four columns under base excitations. It is confirmed that the vibration level of the test structure are reduced to about 1/6 near resonance.

  • PDF

핵연료 조사시험용 캡슐 구조물의 좌굴 및 진동특성 (Buckling and Vibration Characteristics of the Capsule for Nuclear Fuel Irradiation Test)

  • 강영환;김봉구;류정수;김영진;최명환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.125-130
    • /
    • 2004
  • The vibration and buckling characteristics of the capsule for fuel irradiation test are studied. The natural frequencies of the capsule in air and under water are obtained by modal testing and finite element(FE) analysis using ANSYS program, and accelerations with flow are measured to estimate the compatibility with the operation requirement of the HANARO reactor. The experimental fundamental frequency of the capsule in the x and z direction is 8.5Hz and 8.75Hz in air, and 7.5Hz and 7.75Hz under water, respectively. The maximum amplitude of accelerations under the normal operating condition is measured as 11.0m/s$^2$ that is within the allowable vibrational limit(18.99m/s$^2$) of the reactor structure. Also, the maximum displacement at 100% flow is calculated as 0.13mm which is not interference with other nearby structures. FE analysis results show that the natural frequencies are found to be similar to those of the modal testing when three supporting parts are considered as simply supported conditions. From the buckling analysis, when the loading tool is applied, the critical buckling load of the capsule is 233N.

  • PDF

치관보철물 제작시 사용되는 치형 재료에 따른 치경부 변인의 적합성에 관한 연구 (A Study on the Suitability of Cervical Margin According to Die Materials Used in Crown Prosthesis)

  • 이인규;최운재;정희선
    • 대한치과기공학회지
    • /
    • 제22권1호
    • /
    • pp.5-12
    • /
    • 2000
  • The gaps between the die margin worked and the casting body were measured with an optical microscope and compared after making crown prosthetic materials using three kinds of die material - dental stone, extra hard stone, epoxy resin - used in crown prosthesis. The results are as follows : 1. All the gaps between the cast cervical margin and the casting bodies were relatively good regardless of die materials used with the gaps under $50{\mu}m$, the allowable limit. 2. The cervical margin suitability of epoxy resin die was the highest among the three kinds of die material with the suitability value of $30.28{\pm}12.67$. 3. Among the four surfaces(buccal, lingual, mesial, distal) of all the casting bodies, buccal surface was the highest in the cervical margin suitability with the value of $25.93{\pm}15.51$.

  • PDF

Seismic responses of asymmetric steel structures isolated with the TCFP subjected to mathematical near-fault pulse models

  • Tajammolian, H.;Khoshnoudian, F.;Bokaeian, V.
    • Smart Structures and Systems
    • /
    • 제18권5호
    • /
    • pp.931-953
    • /
    • 2016
  • In this paper, the effects of mass eccentricity of superstructure as well as stiffness eccentricity of isolators on the amplification of seismic responses of base-isolated structures are investigated by using mathematical near-fault pulse models. Superstructures with 3, 6 and 9 stories and aspect ratios equal to 1, 2 and 3 are mounted on a reasonable variety of Triple Concave Friction Pendulum (TCFP) bearings considering different period and damping ratio. Three-dimensional linear superstructure mounted on nonlinear isolators are subjected to simplified pulses including fling step and forward directivity while various pulse period ($T_p$) and Peak Ground Velocity (PGV) amounts as two crucial parameters of these pulses are scrutinized. Maximum isolator displacement and base shear as well as peak superstructure acceleration and drift are selected as the main engineering demand parameters. The results indicate that the torsional intensification of different demand parameters caused by superstructure mass eccentricity is more significant than isolator stiffness eccentricity. The torsion due to mass eccentricity has intensified the base shear of asymmetric 6-story model 2.55 times comparing to symmetric one. In similar circumstances, the isolator displacement and roof acceleration are increased 49 and 116 percent respectively in the presence of mass eccentricity. Furthermore, it is demonstrated that torsional effects of mass eccentricity can force the drift to reach the allowable limit of ASCE 7 standard in the presence of forward directivity pulses.

압축점화 가솔린기관의 성능 및 배기특성 (Performance and Emission Characteristics of Compression Ignition Gasoline Engine)

  • 김홍성;김문헌
    • 대한기계학회논문집B
    • /
    • 제27권7호
    • /
    • pp.1007-1014
    • /
    • 2003
  • This work deals with a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. The fuel is injected indirectly into electrically heated inlet air flow. In order to keep a homogeneous air-fuel mixing, the fuel injector is water-cooled by a specially designed coolant passage. Investigated are the engine performance and emission characteristics under the wide range of operating conditions such as 32 to 63 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, and 150 to 18$0^{\circ}C$ in the inlet air temperature. The compression ignition gasoline engine can be achieved that the ultra lean-burn with self-ignition of gasoline fuel by heating inlet air. For example. the allowable lean limit of air-fuel ratio is extended until 63 at engine speed of 1000 rpm and inlet air temperature of 17$0^{\circ}C$. It can be achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxide had been significantly reduced by CAI combustion compared with conventional spark ignition engine.