• 제목/요약/키워드: Allocation model

검색결과 1,205건 처리시간 0.033초

Non-Cooperative Game Joint Hidden Markov Model for Spectrum Allocation in Cognitive Radio Networks

  • Jiao, Yan
    • International journal of advanced smart convergence
    • /
    • 제7권1호
    • /
    • pp.15-23
    • /
    • 2018
  • Spectrum allocation is a key operation in cognitive radio networks (CRNs), where secondary users (SUs) are usually selfish - to achieve itself utility maximization. In view of this context, much prior lit literature proposed spectrum allocation base on non-cooperative game models. However, the most of them proposed non-cooperative game models based on complete information of CRNs. In practical, primary users (PUs) in a dynamic wireless environment with noise uncertainty, shadowing, and fading is difficult to attain a complete information about them. In this paper, we propose a non-cooperative game joint hidden markov model scheme for spectrum allocation in CRNs. Firstly, we propose a new hidden markov model for SUs to predict the sensing results of competitors. Then, we introduce the proposed hidden markov model into the non-cooperative game. That is, it predicts the sensing results of competitors before the non-cooperative game. The simulation results show that the proposed scheme improves the energy efficiency of networks and utilization of SUs.

Performance Analysis of Dynamic Spectrum Allocation in Heterogeneous Wireless Networks

  • Ha, Jeoung-Lak;Kim, Jin-Up;Kim, Sang-Ha
    • ETRI Journal
    • /
    • 제32권2호
    • /
    • pp.292-301
    • /
    • 2010
  • Increasing convergence among heterogeneous radio networks is expected to be a key feature of future ubiquitous services. The convergence of radio networks in combination with dynamic spectrum allocation (DSA) could be a beneficial means to solve the growing demand for radio spectrum. DSA might enhance the spectrum utilization of involved radio networks to comply with user requirements for high-quality multimedia services. This paper proposes a simple spectrum allocation algorithm and presents an analytical model of dynamic spectrum resource allocation between two networks using a 4-D Markov chain. We argue that there may exist a break-even point for choosing whether or not to adopt DSA in a system. We point out certain circumstances where DSA is not a viable alternative. We also discuss the performance of DSA against the degree of resource sharing using the proposed analytical model and simulations. The presented analytical model is not restricted to DSA, and can be applied to a general resource sharing study.

MGIS 및 유전자 알고리즘을 활용한 정보자산 최적배치에 관한 연구 (A Study on the Optimal Allocation for Intelligence Assets Using MGIS and Genetic Algorithm)

  • 김영화;김수환
    • 대한산업공학회지
    • /
    • 제41권4호
    • /
    • pp.396-407
    • /
    • 2015
  • The literature about intelligence assets allocation focused on mainly single or partial assets such as TOD and GSR. Thus, it is limited in application to the actual environment of operating various assets. In addition, field units have generally vulnerabilities because of depending on qualitative analysis. Therefore, we need a methodology to ensure the validity and reliability of intelligence asset allocation. In this study, detection probability was generated using digital geospatial data in MGIS (Military Geographic Information System) and simulation logic of BCTP (Battle Commander Training Programs) in the R.O.K army. Then, the optimal allocation mathematical model applied concept of simultaneous integrated management, which was developed based on the partial set covering model. Also, the proposed GA (Genetic Algorithm) provided superior results compared to the mathematical model. Consequently, this study will support effectively decision making by the commander by offering the best alternatives for optimal allocation within a reasonable time.

사용자 계층에서 Foundation Fieldbus의 대역폭할당기법구현 및 실험적 검증 (Implementation of Bandwidth allocation scheme and Experimental Performance Evaluation on application layer of Foundation Fieldbus)

  • 송승민;홍승호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.430-433
    • /
    • 2002
  • Fieldbus traffic consists of periodic, time-critical and time-available data. A bandwidth allocation scheme allocates periodic, time-critical and time-available data traffic to the bandwidth-limited network resource. This paper presents an implementation method of the bandwidth allocation scheme in the user layer of Foundation fieldbus. In this study, an experimental model of a Foundation Fieldbus network system is developed. Using the experimental model, validity of the bandwidth allocation scheme is examined. The results obtained from the experimental model show that the proposed scheme restricts the delay of both periodic and time-critical data to a pre-specified bound. The bandwidth allocation scheme also fully utilized the bandwidth resource of the network system.

  • PDF

Optimal Allocation Method of Hybrid Active Power Filters in Active Distribution Networks Based on Differential Evolution Algorithm

  • Chen, Yougen;Chen, Weiwei;Yang, Renli;Li, Zhiyong
    • Journal of Power Electronics
    • /
    • 제19권5호
    • /
    • pp.1289-1302
    • /
    • 2019
  • In this paper, an optimal allocation method of a hybrid active power filter in an active distribution network is designed based on the differential evolution algorithm to resolve the harmonic generation problem when a distributed generation system is connected to the grid. A distributed generation system model in the calculation of power flow is established. An improved back/forward sweep algorithm and a decoupling algorithm are proposed for fundamental power flow and harmonic power flow. On this basis, a multi-objective optimization allocation model of the location and capacity of a hybrid filter in an active distribution network is built, and an optimal allocation scheme of the hybrid active power filter based on the differential evolution algorithm is proposed. To verify the effect of the harmonic suppression of the designed scheme, simulation analysis in an IEEE-33 nodes model and an experimental analysis on a test platform of a microgrid are adopted.

Communication Resource Allocation Strategy of Internet of Vehicles Based on MEC

  • Ma, Zhiqiang
    • Journal of Information Processing Systems
    • /
    • 제18권3호
    • /
    • pp.389-401
    • /
    • 2022
  • The business of Internet of Vehicles (IoV) is growing rapidly, and the large amount of data exchange has caused problems of large mobile network communication delay and large energy loss. A strategy for resource allocation of IoV communication based on mobile edge computing (MEC) is thus proposed. First, a model of the cloud-side collaborative cache and resource allocation system for the IoV is designed. Vehicles can offload tasks to MEC servers or neighboring vehicles for communication. Then, the communication model and the calculation model of IoV system are comprehensively analyzed. The optimization objective of minimizing delay and energy consumption is constructed. Finally, the on-board computing task is coded, and the optimization problem is transformed into a knapsack problem. The optimal resource allocation strategy is obtained through genetic algorithm. The simulation results based on the MATLAB platform show that: The proposed strategy offloads tasks to the MEC server or neighboring vehicles, making full use of system resources. In different situations, the energy consumption does not exceed 300 J and 180 J, with an average delay of 210 ms, effectively reducing system overhead and improving response speed.

Regional Science and Technology Resource Allocation Optimization Based on Improved Genetic Algorithm

  • Xu, Hao;Xing, Lining;Huang, Lan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권4호
    • /
    • pp.1972-1986
    • /
    • 2017
  • With the advent of the knowledge economy, science and technology resources have played an important role in economic competition, and their optimal allocation has been regarded as very important across the world. Thus, allocation optimization research for regional science and technology resources is significant for accelerating the reform of regional science and technology systems. Regional science and technology resource allocation optimization is modeled as a double-layer optimization model: the entire system is characterized by top-layer optimization, whereas the subsystems are characterized by bottom-layer optimization. To efficaciously solve this optimization problem, we propose a mixed search method based on the orthogonal genetic algorithm and sensitivity analysis. This novel method adopts the integrated modeling concept with a combination of the knowledge model and heuristic search model, on the basis of the heuristic search model, and simultaneously highlights the effect of the knowledge model. To compare the performance of different methods, five methods and two channels were used to address an application example. Both the optimized results and simulation time of the proposed method outperformed those of the other methods. The application of the proposed method to solve the problem of entire system optimization is feasible, correct, and effective.

단거리 지대공 미사일의 최적배치에 관한 연구 (A Study on Optimal Allocation of Short Surface-to-Air Missile)

  • 이영해;남상억
    • 한국국방경영분석학회지
    • /
    • 제26권1호
    • /
    • pp.34-46
    • /
    • 2000
  • The object of this study is to construct a model for an optimal allocation of short surface to air missile defending our targets most efficiently from hostile aircraft´s attack. For the purpose of this, we analyze and establish facility allocation concept of existing models, apply set covering theory appropriate to problem´s properties, present the process of calculating the probability of target being protected, apply Sherali-Kim´s branching variable selection strategy, and then construct the model. As constructed model apply the reducing problem with application, we confirm that we can apply the large scale, real problem.

  • PDF

CA Joint Resource Allocation Algorithm Based on QoE Weight

  • LIU, Jun-Xia;JIA, Zhen-Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권5호
    • /
    • pp.2233-2252
    • /
    • 2018
  • For the problem of cross-layer joint resource allocation (JRA) in the Long-Term Evolution (LTE)-Advanced standard using carrier aggregation (CA) technology, it is difficult to obtain the optimal resource allocation scheme. This paper proposes a joint resource allocation algorithm based on the weights of user's average quality of experience (JRA-WQOE). In contrast to prevalent algorithms, the proposed method can satisfy the carrier aggregation abilities of different users and consider user fairness. An optimization model is established by considering the user quality of experience (QoE) with the aim of maximizing the total user rate. In this model, user QoE is quantified by the mean opinion score (MOS) model, where the average MOS value of users is defined as the weight factor of the optimization model. The JRA-WQOE algorithm consists of the iteration of two algorithms, a component carrier (CC) and resource block (RB) allocation algorithm called DABC-CCRBA and a subgradient power allocation algorithm called SPA. The former is used to dynamically allocate CC and RB for users with different carrier aggregation capacities, and the latter, which is based on the Lagrangian dual method, is used to optimize the power allocation process. Simulation results showed that the proposed JRA-WQOE algorithm has low computational complexity and fast convergence. Compared with existing algorithms, it affords obvious advantages such as improving the average throughput and fairness to users. With varying numbers of users and signal-to-noise ratios (SNRs), the proposed algorithm achieved higher average QoE values than prevalent algorithms.

Bit Allocation for Interframe Video Coding Systems

  • Kim, Wook-Joong;Kim, Seong-Dae;Kim, Jin-Woong
    • ETRI Journal
    • /
    • 제24권4호
    • /
    • pp.280-289
    • /
    • 2002
  • In this work, we present a novel approach to the bit allocation problem that aims to minimize overall distortion subject to a bit rate constraint. The optimal solution can be found by the Lagrangian method with dynamic programming. However, the optimal bit allocation for block-based interframe coding is practically unattainable because of the interframe dependency of macroblocks caused by motion compensation. To reduce the computational burden while maintaining a result close to the optimum, i.e., near optimum, we propose an alternative method. First, we present a partitioned form of the bit allocation problem: a "frame-level problem" and "one-frame macroblock-level problems." We show that the solution to this new form is also the solution to the conventional bit allocation problem. Further, we propose a bit allocation algorithm using a "two-phase optimization technique" with an interframe dependency model and a rate-distortion model.

  • PDF