• Title/Summary/Keyword: Alleles

Search Result 892, Processing Time 0.025 seconds

Study on the Analysis of β-lactoglobulin and κ-casein Genotypes of Cattle using Polymerase Chain Reaction (PCR 기법을 이용한 축우의 β-lactoglobulin 및 κ-casein 유전자형 분석에 관한 연구)

  • Sang, Byung Chan;Ryoo, Seung Heui;Lee, Sang Hoon;Song, Chi Eun;Nam, Myung Soo;Chon, Byung Soon
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.2
    • /
    • pp.216-224
    • /
    • 1998
  • This study was performed to offer the basic and applicable data for improvement of Korean cattle and dairy cattle, according to finding the genetic construction obtained from analysis of genetic polymorphisms of ${\beta}$-lactoglobulin and ${\kappa}$-casein loci related Korean cattle and Holstein cows using PCR-RFLP. Genomic DNA used in this study was prepared from the blood of 253 individuals of Korean cattle in Korean Native Cattle Improvement Center, NLCF, and the blood of 113 individuals of Holstein cows in National Livestock Research Institute. The results obtained are summarized as follows : 1. This study confirmed amplified products of 530bp and 262bp fragments obtained from the amplification of ${\beta}$-lactoglobulin and ${\kappa}$-casein loci in Korean cattle and Holstein breed by PCR. 2. The ${\beta}$-lactoglobulin AA genotype showed 153bp and 109bp fragments, and ${\beta}$-lactoglobulin AB genotype showed 153bp, 109bp, 79bp and 74bp fragments, and BB genotype showed 109bp, 79bp and 74bp fragments in amplified products of ${\beta}$-lactoglobulin loci with the restricted enzyme digestion of Hae III. 3. The ${\kappa}$-casein AA genotype showed a 530bp fragment, and ${\kappa}$-casein AB genotype showed 530bp, 344bp and 186bp fragments, and BB genotype showed 344bp and 186bp fragments in amplified products of ${\kappa}$-casein loci with the restricted enzyme digestion of Taq I. 4. On ${\beta}$-lactoglobulin genotypes and gene frequencies, Korean cattle were 6.72%, 26.09% and 67.19% for AA, AB and BB genotypes, and ${\beta}$-lactoglobulin A and B alleles were 0.197 and 0.803, and Holstein were 35.40%, 56.64% and 7.96% for AA, AB and BB genotypes, and ${\beta}$-lactoglobulin A and B alleles were 0.637 and 0.363, respectively. 5. On ${\kappa}$-casein genotypes and gene frequencies, Korean cattle were 46.25%, 39.13% and 14.62% for AA, AB and BB genotypes, and ${\kappa}$-casein A and B alleles were 0.658 and 0.342, and Holstein were 60.18% and 38.94% and 0.88% for AA, AB and BB genotypes, and ${\kappa}$-casein A and B alleles were 0.796 and 0.204, respectively. 6. As a consequence, the gene frequency was 0.197 and 0.803 for ${\beta}$-lactoglobulin A and B alleles, and 0.658 and 0.342 for ${\kappa}$-casein A and B alleles in Korea cattle, but was 0.637 and 0.363 for ${\beta}$-lactoglobulin A and B alleles, and 0.796 and 0.204 for ${\kappa}$-casein A and B alleles in Holstein, respectively.

  • PDF

Genetic diversity of wild and farmed black sea bream populations in Jeju

  • An, Hye-Suck;Hong, Seong-Wan;Lee, Jung-Uie;Park, Jung-Youn;Kim, Kyung-Kil
    • Animal cells and systems
    • /
    • v.14 no.1
    • /
    • pp.37-44
    • /
    • 2010
  • Black sea bream, Acanthopagrus schlegelii, is a commercially important fish in Korea. As a preliminary investigation into the effect of hatchery rearing for stock enhancement, we examined genetic diversity between wild and farmed black sea bream populations from Jeju using six microsatellite markers. High levels of polymorphism were observed between the two populations. A total of 87 different alleles were found at the loci, with some alleles being unique. Allelic variability ranged from 8 to 22 in the wild population and from 7 to 17 in the farmed one. Average observed and expected heterozygosities were estimated at 0.87 and 0.88 in the wild sample. The corresponding estimates were 0.83 and 0.86 in the farmed sample. Although a considerable loss of rare alleles was observed in the farmed sample, no statistically significant reductions were found in heterozygosity or allelic diversity in the farmed sample, compared with the wild one. Significant genetic heterogeneity was found between the wild and farmed populations. These results suggest that more intensive breeding practices for stock enhancement may have resulted in a further decrease of genetic diversity. Thus, it is necessary to monitor genetic variation in bloodstock, progeny, and target populations and control inbreeding in a commercial breeding program for conservation. This information may be useful for fisheries management and the aquaculture industry.

Genetic Variation of Several Isoenzymes in Pinus densiflora for. multicaulis (반송(Pinus densiflora for. multicaulis)의 몇 가지 동위효소(同位酵素)의 유전변이(遺傳變異))

  • Hwang, Jae Woo;Lee, Seok Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.3
    • /
    • pp.409-415
    • /
    • 1996
  • Isozyme variations in 4 enzyme systems in Pinus densiflora for. multicaulis in 31 individual trees collected throughout the country were studied by starch gel electrophoresis using haploid megagametophyte tissue to compare with those of Pinus densiflora. A minimum of 7 loci were found to code for isozymes of the enzyme systems. No variation was found at locus GOT-A; at the remaining 6 variable loci(GDH-A, GOT-B, GOT-C, IDH-A, LAP-,A, LAP-B) and 2 to 4 alleles were identified. We could not find any marker alleles to distinguish Pinus densiflora for. multicaulis from Pinus densiflora at the isozymes studied here. Allele frequency distributions at each loci were almost all the same as those of P. densiflora. The percentage of polymorphic loci(99% level), the number of alleles per locus, the observed and expected heterozygosities were 85.7, 2.3, 0.165 and 0.186%, respectively. The level of genetic diversity in Pinus densiflora for. multicaulis seemed to be less than that of P. densiflora.

  • PDF

Genetic Diversity and Population Structure of Korean Soybean Landrace [Glycine max(L.) Merr.]

  • Cho, Gyu-Taek;Lee, Jeong-Ran;Moon, Jung-Kyung;Yoon, Mun-Sup;Baek, Hyung-Jin;Kang, Jung-Hoon;Kim, Tae-San;Paek, Nam-Chon
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.83-90
    • /
    • 2008
  • Two hundred and sixty Korean soybean landrace accessions were analyzed for polymorphism at 92 simple sequence repeat(SSR) loci. The 995 identified alleles served as raw data for estimating genetic diversity and population structure. The number of alleles at a locus ranged from three to 27 with a mean of 10.4 alleles per locus. $F_{ST}$ values estimated by analysis of molecular variance(AMOVA) using SSR data set were 0.018, 0.027, and 0.016 for usage, collection site and maturity groups, respectively, indicating little genetic differentiation. The model-based clustering analysis placed the accessions into three clusters(K=3) with 0.0503 of $F_{ST}$, indicating moderate genetic differentiation. Duncan's Multiple Range Test at K = 3 on the basis of 18 quantitative traits revealed that one cluster was mainly differentiated from the other two clusters by seed related traits and the other two clusters were differentiated from each other by biochemical traits. Genetic structure of Korean soybean landraces was differentiated by model-based clustering and supported by their phenotypic traits in part. This preliminary study could be the first step towards more efficient germplasm management and utilization of soybean landraces and helpful in association studies between genotypic and phenotypic traits in Korean soybean landraces.

  • PDF

DNA fingerprinting analysis for soybean (Glycine max) varieties in Korea using a core set of microsatellite marker (핵심 Microsatellite 마커를 이용한 한국 콩 품종에 대한 Fingerprinting 분석)

  • Kwon, Yong-Sham
    • Journal of Plant Biotechnology
    • /
    • v.43 no.4
    • /
    • pp.457-465
    • /
    • 2016
  • Microsatellites are one of the most suitable markers for identification of variety, as they have the capability to discriminate between narrow genetic variations. The polymorphism level between 120 microsatellite primer pairs and 148 soybean varieties was investigated through the fluorescence based automatic detection system. A set of 16 primer pairs showed highly reproducible polymorphism in these varieties. A total of 204 alleles were detected using the 16 microsatellite markers. The number of alleles per locus ranged from 6 to 28, with an average of 12.75 alleles per locus. The average polymorphism information content (PIC) was 0.86, ranging from 0.75 to 0.95. The unweighted pair group method using the arithmetic averages (UPGMA) cluster analysis for 148 varieties were divided into five distinctive groups, reflecting the varietal types and pedigree information. All the varieties were perfectly discriminated by marker genotypes. These markers may be useful to complement a morphological assessment of candidate varieties in the DUS (distinctness, uniformity and stability) test, intervening of seed disputes relating to variety authentication, and testing of genetic purity in soybean varieties.

Accumulation of triple recessive alleles for three antinutritional proteins in soybean with black seed coat and green cotyledon

  • Kang, Gyung Young;Choi, Sang Woo;Chae, Won Gi;Chung, Jong Il
    • Journal of Plant Biotechnology
    • /
    • v.47 no.2
    • /
    • pp.118-123
    • /
    • 2020
  • The black seed coat of soybeans contain anthocyanins which promote health. However, mature soybean seeds contain anti-nutritional factors like lipoxygenase, lectin and Kunitz Trypsin Inhibitor (KTI) proteins. Furthermore, these seeds can be used only after the genetic elimination of these proteins. Therefore, the objective of this study was to develop novel soybean genotypes with black seed coat and triple recessive alleles (lx1lx1lx2lx2lx3lx3, titilele) for lipoxygenase, lectin, and KTI proteins. From a cross of parent1 (lx1lx2lx3/lx1lx2lx3, ti/ti, Le/Le) and parent2 (lx1lx2lx3/lx1lx2lx3, Ti/Ti, le/le), 132 F2 seeds were obtained. A 3:1 segregation ratio was observed during F2 seed generation for the inheritance of lectin and KTI proteins. Between a cross of the Le and Ti genes, the observed independent inheritance ratio in the F2 seed generation was 9: 3 : 3 : 1 (69 Le_Ti_: 32 leleTi_: 22 Le_titi: 9 leletiti) (χ2=2.87, P=0.5 - 0.1). From nine F2 seeds with triple recessive alleles (lx1lx1lx2lx2lx3lx3, titilele genotype), one novel strain posessing black seed coat, and free of lipoxygenase, lectin and KTI proteins, was selected. The seed coat color of the new strain was black and the cotyledon color of the mature seed was green. The weight of 100 seeds belonging to the new strain was 35.4 g. This black soybean strain with lx1lx1lx2lx2lx3lx3, titilele genotype is a novel strain free of lipoxygenase, lectin, and KTI proteins.

Genomic Heterogeneity of Chicken Populations in India

  • Rajkumar, Ullengala;Gupta, B. Ramesh;Reddy, A. Rajasekhara
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.12
    • /
    • pp.1710-1720
    • /
    • 2008
  • A comprehensive genome profiling study was undertaken based on automated genotyping and analysis of 20 microsatellite markers that involved 155 birds representing eight different populations. The distribution of microsatellite markers in each of these breeds helped us to decipher genetic heterogeneity, population genetic structure and evolutionary relationships of the present day chicken populations in India. All the microsatellite loci utilized for the analysis were polymorphic and reasonably informative. A total of 285 alleles were documented at 20 loci with a mean of 14.25 alleles/locus. A total of 103 alleles were found to be population/strain specific of which, only 30 per cent had a frequency of more than 10. The mean PIC values ranged from 0.39 for the locus ADL158 to 0.71 for loci MCW005 or ADL267 across the genomes and 0.55 in Dahlem Red to 0.71 in Desi (non-descript), among the populations. The overall mean expected and observed heterozygosity estimates for our populations were 0.68 and 0.64, respectively. The overall mean inbreeding coefficients (FIS) varied between -0.05 (Babcock) and 0.16 (Rhode Island Red). The pairwise FST estimates ranged from 0.06 between Aseel and Desi (non-descript) to 0.14 between Dahlem Red and Babcock. The Nei's genetic distance varied from 0.30 (WLH-IWD and WLH-IWF) to 0.80 (Dahlem Red and Babcock. Phylogenetic analysis grouped all the populations into two main clusters, representing i) the pure breeds, Dahlem Red and Rhode Island Red, and ii) the remaining six populations/strains. All the chicken populations studied were in the state of mild to moderate inbreeding except for commercial birds. A planned breeding is advised for purebreds to revive their genetic potential. High genetic diversity exists in Desi (non-descript), local birds, which can be exploited to genetically improve the birds suitable for backyard poultry.

Development and Characterization of New Microsatellite Markers for the Oyster Mushroom (Pleurotus ostreatus)

  • Ma, Kyung-Ho;Lee, Gi-An;Lee, Sok-Young;Gwag, Jae-Gyun;Kim, Tae-San;Kong, Won-Sik;Seo, Kyoung-In;Lee, Gang-Seob;Park, Yong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.851-857
    • /
    • 2009
  • We developed and characterized 36 polymorphic microsatellite markers for the oyster mushroom (Pleurotus ostreatus). In total, 169 alleles were identified with an average of 4.7 alleles per locus. Values for observed ($H_o$) and expected ($H_E$) heterozygosities ranged from 0.027 to 0.946 and from 0.027 to 0.810, respectively. Nineteen loci deviated from Hardy-Weinberg equilibrium. Significant (P<0.05) excess heterozygosity was observed at nine loci. Linkage disequilibrium (LD) was significant (P<0.05) between pairs of locus alleles. Cluster analysis revealed that five species of genus Pleurotus made a distinct group, and the individual cultivars were grouped into major five groups from G-1 to G-5. The diverse cultivars of P. ostreatus were discriminated and the other four species revealed a different section in the UPGMA tree. These microsatellite markers proved to be very useful tools for genetic studies, including assessment of the diversity and population structure of P. ostreatus.