• Title/Summary/Keyword: All-metal heating

Search Result 48, Processing Time 0.026 seconds

Stability Study of the Pigment Extract from Yangha (Zingiber mioga ROSC) (양하 추출액의 색소 안정성 연구)

  • Kim, Myung-Hyun;Han, Young-Sil
    • Korean journal of food and cookery science
    • /
    • v.32 no.3
    • /
    • pp.325-332
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate the stability of anthocyanin pigment extract from Yangha (Zingiber mioga ROSC). Methods: Yangha extract was investigated for the effects of metal ion, temperature, light, heating time, sugars, and organic acids on the stability of anthocyanin pigments. Results: Yangha pigment was more stable than other anthocyanin pigments at unstable temperatures. The stability of anthocyanin pigment significantly decreased one day after exposure to light. All tested sugars decreased the abundance of Yangha pigments, with highest levels in the presence of sucrose, and progressive decrease in the presence of maltose, fructose, glucose and galactose, in order. Among the organic acids tested, citric acid and malic acid were the most effective in stabilizing the Yangha pigment, followed by acetic acid and formic acid. Most metal ions except $Fe^{2+}$ were effective in stabilizing the pigment. Conclusion: These results provide useful reference data for the use of pigments from Yangha in processed foods.

Effects of Simultaneous Bending and Heating on Characteristics of Flexible Organic Thin Film Transistors

  • Cho, S.W.;Kim, D.I.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.470-470
    • /
    • 2013
  • Recently, active materials such as amorphous silicon (a-Si), poly crystalline silicon (poly-Si), transition metal oxide semiconductors (TMO), and organic semiconductors have been demonstrated for flexible electronics. In order to apply flexible devices on the polymer substrates, all layers should require the characteristic of flexibility as well as the low temperature process. Especially, pentacene thin film transistors (TFTs) have been investigated for probable use in low-cost, large-area, flexible electronic applications such as radio frequency identification (RFID) tags, smart cards, display backplane driver circuits, and sensors. Since pentacene TFTs were studied, their electrical characteristics with varying single variable such as strain, humidity, and temperature have been reported by various groups, which must preferentially be performed in the flexible electronics. For example, the channel mobility of pentacene organic TFTs mainly led to change in device performance under mechanical deformation. While some electrical characteristics like carrier mobility and concentration of organic TFTs were significantly changed at the different temperature. However, there is no study concerning multivariable. Devices actually worked in many different kinds of the environment such as thermal, light, mechanical bending, humidity and various gases. For commercialization, not fewer than two variables of mechanism analysis have to be investigated. Analyzing the phenomenon of shifted characteristics under the change of multivariable may be able to be the importance with developing improved dielectric and encapsulation layer materials. In this study, we have fabricated flexible pentacene TFTs on polymer substrates and observed electrical characteristics of pentacene TFTs exposed to tensile and compressive strains at the different values of temperature like room temperature (RT), 40, 50, $60^{\circ}C$. Effects of bending and heating on the device performance of pentacene TFT will be discussed in detail.

  • PDF

AN INTRODUCTION TO SEMICONDUCTOR INITIATION OF ELECTROEXPLOSIVE DEVICES

  • Willis K. E.;Whang, D. S.;Chang, S. T.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.21-26
    • /
    • 1994
  • Conventional electroexplosive devices (EED) commonly use a very small metal bridgewire to ignite explosive materials i.e. pyrotechnics, primary and secondary explosives. The use of semiconductor devices to replace “hot-wire” resistance heating elements in automotive safety systems pyrotechnic devices has been under development for several years. In a typical 1 amp/1 watt electroexplosive devices, ignition takes place a few milliseconds after a current pulse of at least 25 mJ is applied to the bridgewire. In contrast, as for a SCB devices, ignition takes place in a few tens of microseconds and only require approximately one-tenth the input energy of a conventional electroexplosive devices. Typically, when SCB device is driven by a short (20 $\mu\textrm{s}$), low energy pulse (less than 5 mJ), the SCB produces a hot plasma that ignites explosive materials. The advantages and disadvantages of this technology are strongly dependent upon the particular technology selected. To date, three distinct technologies have evolved, each of which utilizes a hot, silicon plasma as the pyrotechnic initiation element. These technologies are 1.) Heavily doped silicon as the resistive heating initiation mechanism, 2.) Tungsten enhanced silicon which utilizes a chemically vapor deposited layer of tungsten as the initiation element, and 3.) a junction diode, fabricated with standard CMOS processes, which creates the initial thermal environment by avalanche breakdown of the diode. This paper describes the three technologies, discusses the advantages and disadvantages of each as they apply to electroexplosive devises, and recommends a methodology for selection of the best device for a particular system environment. The important parameters in this analysis are: All-Fire energy, All-Fire voltage, response time, ease of integration with other semiconductor devices, cost (overall system cost), and reliability. The potential for significant cost savings by integrating several safety functions into the initiator makes this technology worthy of attention by the safety system designer.

  • PDF

Magnetic Substance Detecting Method for All Metal Induction Heating System (자성 및 비자성 용기 겸용 HB 공진형 인버터 유도 가열기를 위한 공진 네트워크 설계 및 제어 알고리즘)

  • Lim, Jong-Mo;Ahn, Jung-Hoon;Kim, Og-Jin;Lee, Byoung-Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.224-226
    • /
    • 2013
  • 본 논문은 유도가열 시스템의 자성체 판별 알고리즘을 제안한다. 코일의 형상 및 구성에 따른 임피던스를 수학적으로 분석하여 자성체와 비자성체 동시 가열을 위한 유도 코일을 능동적으로 설계 한다. 또한 인버터 출력전압과 부하 전류를 센싱하여 계산한 임피던스 값과 수식으로 구한 부하 임피던스를 비교해 가열 용기의 재질을 판별한다. 제안된 알고리즘을 통해 자성체 및 비자성체 유도가열을 하나의 공진형 인버터로 구현할 수 있다. 제안된 판별법은 시뮬레이션을 통해 검증한다.

  • PDF

Comparative Analysis of Power Losses According to Operation Method of HB Inverter for Nonmagnetic Induction Heating (비자성체 유도가열을 위한 HB 공진형 인버터 운전 방법에 따른 손실 비교 분석)

  • Lee, Jae Han;Kim, Min Cheol;Jang, Eun Su;Park, Sang Min;Joo, Dongmyoung;Lee, Byoung Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.131-132
    • /
    • 2017
  • 본 논문은 자성체 및 비자성체 용기 모두 가열이 가능한 All Metal Induction Cooker의 전력변환장치의 운전 방식에 따른 손실을 비교 분석한다. 용기 재질 별로 다른 비저항 및 비투자율을 보상하기 위한 각각의 방식에 따라 Induction Cooker의 공진 네트워크를 설계하고 시뮬레이션을 통해 시스템의 손실을 비교 및 분석한다.

  • PDF

Fatigue Behavior Analysis of Welded Rod/Knuckle Assembly for Hydraulic Cylinder (용접이음 된 유압 실린더용 로드/너클 조립체의 피로거동 해석)

  • Rhee, Hwanwoo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.93-99
    • /
    • 2013
  • Parts and structures such as piston rod and knuckle joint for the use of hydraulic cylinder are often welded together in some fashion, usually due to cost and process effectiveness. Welding strongly affects the material by the process of heating and subsequent cooling as well as by the fusion process with additional filler material. Furthermore, a weld is usually far from being perfect, containing inclusions, pores, cavities, undercuts etc. As a consequence, fatigue failures appear in welded structures mostly at the welds rather than in the base metal, even if the latter contains notches. For this reason, fatigue analyses are of high practical interest for all welded structures under the action of cyclic loads. This paper describes the influence of welding parameters, material combinations and heat treatment on the fatigue behavior of welded cylinder rod. In addition, statistical characterization of stress-life response in weldment of hydraulic cylinder rod are presented.

Structural and Dielectric Properties of Sol-gel Derived BiFeO3/Pb(Zr,T)O3 Heterolayered Thin Films

  • Nam, Sung-Pill;Lee, Sung-Gap;Lee, Young-Hie
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.5
    • /
    • pp.212-215
    • /
    • 2010
  • $BiFeO_3/Pb(Zr_{0.95}Ti_{0.05})O_3$ (BFO/PZT) heterolayered thin films were fabricated by the spin coating method on a Pt/Ti/$SiO_2$/Si substrate using metal alkoxide solutions. The coating and heating procedure was repeated 6 times to form the heterolayered films. The thickness of the BFO/PZT films after one cycle of drying/sintering is about 30-40 nm. All BFO/PZT films show a void free uniform grain structure without the presence of rosette structures. It can be assumed that the crystal growth of the upper BFO layers can be influenced by the lower PZT layers. As the number of coatings increased, the dielectric constant increased, so that the value for the 6-layer film was 1360 at 1 KHz.

The Mechanical Properties and the Nondestructive Evaluation of Dissimilar Friction Welded Steel Bars (이종마찰용접 강봉재의 기계적특성과 비파괴 평가)

  • Jung, W.T.;Kong, Y.S.;Kim, S.J.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.77-82
    • /
    • 2006
  • In this study, dissimilar friction welding were produced using 15mm diameter solid bar in chrome molybedenum steel(SCM440) to carbon steel(S45C) to investigate their mechanical properties and the relationship between the weld parameters and the nondestructive coefficients, such as AE counts and ultrasonic attenuation coefficient. The main friction welding parameters were selected to endure good quality welds on the basis of visual examination, tensile tests, Vickers hardness surveys of the bond of area and heat affected zone. The specimens were tested as-welded and post weld heat treated(PWHT). The tensile strength of the friction welded steel bars was increased up to 100% of the S45C base metal under the condition of all heating time. The ductility of PWHT specimens is higher than as-welded.

  • PDF

AN EXPERIMENTAL STUDY ON THE BOND STRENGTH OF ETCHED CAST RESTORATION USING DIFFERENT METAL SURFACE TREATMENTS (수지접합 수복물용 합금의 피착면처리에 따른 결합력에 관한 실험적 연구)

  • Lee, Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.1
    • /
    • pp.13-22
    • /
    • 1991
  • This study investigated the effects of surface treatment on the tensile bond strength of resinbonded prosthesis. The Rexillium III specimens were treated with $50{\mu}m\;Al_2O_3$ blasting. Type IV gold alloy specimens were treated with $400^{\circ}C$ heating and tin plating method. All specimens were bonded with MBAS composite resin cement and followed by immersion test into the $37^{\circ}C$ water bath for 7 days. The specimens were debonded in tension with an Instron machine and observed with SEM. The modes of failure were recorded also. The following conclusions were obtained : 1. The tensile bond strength decreased in following order. $50{\mu}m\;Al_2O_3$ basted Resillium III group, Type IV gold alloy group treated with $400^{\circ}C$ heat and tin plating type IV gold alloy group, and statistical significant differences were observed(p<0.05). 2. The tensile bond strength decreased in all groups after 7 days immersion test, but statistical significant differences were observed in Rexillium III specimens only. 3. The sharp and irregular surface were observed in Rexillium III, but $400^{\circ}C$ heat treated and tin plated groups had round and broad surface in SEM. 4. The models of bond failure were cohesive-adhesive failure mainly.

  • PDF

A Comparative Analysis on the Thermal Performance of Solar Vacuum Collector Tubes (진공관식 태양열 집열 튜브의 열성능 비교 분석)

  • Hyun, June-Ho;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.3
    • /
    • pp.15-22
    • /
    • 2003
  • This study deals with the collection of solar energy and its storage in evacuated tubular collector systems for different types of header design, flow passage and heat transfer devices. In order to elicit the most efficient combination of header design, flow passage, heat transfer hardware and operating conditions, a series of tests were done for the four different types of solar collectors utilizing vacuum tubes. The systems studied here either has the evacuated collector tubes with a metal cap on one end or the all-glass evacuated solar collector tubes These evacuated tubular collectors are known to be more efficient than the flat-plate ones in both direct and diffuse solar radiation. Test results show that the system comprised of the all-glass evacuated tubes with U-shaped copper pipes inside outperforms the other configurations. Especially, a rolled copper sheet tightly placed along the inner surface of each inner tube enhances heat transfer between the heated collector surface and the water contained in the U-shaped copper pipe.