• Title/Summary/Keyword: All-ceramic materials

Search Result 514, Processing Time 0.022 seconds

Approach to Compositional Effect on Properties of Aspherical Optical Glass for GMP Process with Design of Experiments (실험계획법에 의한 GMP용 비구면 광학유리의 성질에 미치는 조성의 효과 연구)

  • Maeng, Jee-Hun;Kim, Hyeong-Jun;Jung, Ah-Reum;Kim, Jong-Cheol;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.40-45
    • /
    • 2011
  • In this study, the composition of optical glass for GMP(glass molding process) was designed with 'Design of Experiments' method. All the composition batch was performed by 'Create Factorial Design' method. Particularly, $SiO_2$, BaO and $Al_2O_3$ were chosen major parameters for investigating the effects of components on optical and thermal properties. BaO and $Al_2O_3$ strongly influenced on optical and thermal properties, respectively. Finally, the approximate values of desired optical and thermal values were obtained by microtuning of compositions. At the composition of $BaO:Al_2O_3:SiO_2$=10:4:48 (molar ratio), refractive index($n_d$) was 1.5833, coefficient of thermal expansion(CTE) was $104{\times}10^{-7}/^{\circ}C$.

Effect of Si Content on the Phase Formation Behavior and Surface Properties of the Cr-Si-Al-N Coatings (Cr-Si-Al-N 코팅의 상형성 및 표면 물성에 미치는 Si 함량의 영향)

  • Choi, Seon-A;Kim, Hyung-Sun;Kim, Seong-Won;Lee, Sungmin;Kim, Hyung-Tae;Oh, Yoon-Suk
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.580-586
    • /
    • 2016
  • Cr-Si-Al-N coating with different Si content were deposited by hybrid physical vapor deposition (PVD) method consisting of unbalanced magnetron (UBM) sputtering and arc ion plating (AIP). The deposition temperature was $300^{\circ}C$, and the gas ratio of $Ar/N_2$ were 9:1. The CrSi alloy and aluminum targets used for arc ion plating and sputtering process, respectively. Si content of the CrSi alloy targets were varied with 1 at%, 5 at%, and 10 at%. The phase analysis, composition and microstructural analysis performed using x-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) including energy dispersive spectroscopy (EDS), respectively. All of the coatings grown with textured CrN phase (200) plane. The thickness of the Cr-Si-Al-N films were measured about $2{\mu}m$. The friction coefficient and removal rate of films were measured by a ball-on-disk test under 20N load. The friction coefficient of all samples were 0.6 ~ 0.8. Among all of the samples, the removal rate of CrSiAlN (10 at% Si) film shows the lowest values, $4.827{\times}10^{-12}mm^3/Nm$. As increasing of Si contents of the CrSiAlN coatings, the hardness and elastic modulus of CrSiAlN coatings were increased. The morphology and composition of wear track of the films was examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy, respectively. The surface energy of the films were obtained by measuring of contact angle of water drop. Among all of the samples, the CrSiAlN (10 at% Si) films shows the highest value of the surface energy, 41 N/m.

Ceramic Microhole Machining using Excimer Laser (Excimer laser를 이용한 세라믹 미세구멍 가공)

  • Paik, Byoung-Man;Lee, Kun-Sang
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.519-524
    • /
    • 2001
  • These days, $Al_[2}O_{3}$ ceramic use all over the industry because dynamic function and special properties to compare traditional material. But $Al_[2}O_{3}$ ceramic is high hardness and brittleness materials. For this reason, it is very difficult to process. Therefor, In this paper, it was investigated that laser process parameter, which can produce appropriate quality of $Al_[2}O_{3}$ ceramic microhole machining utilized Nd:YAG laser and Excimer laser.

  • PDF

Synthesis and Characterization of Langastie-type Materials

  • An, Jin-Ho;Yoon, Won-Ki;Kynug Joo;Auh, Keun-Ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.115-119
    • /
    • 1998
  • Possibilities of substitution was investigated in the Langadite({{{{ {La }_{3 } {Ga }_{ 5}{SiO }_{14 }}}}}) system.{{{{{TiO}_{2 }}}}} was substitutes for{{{{{SiO}_{2 }}}}} followed by the substitution of{{{{{Nd}_{2 }{O}_{3}}}}}fo{{{{{La}_{2 }{O}_{3}}}}}. An effort to replace GeO2, which is reported to have been substitution for{{{{{SiO}_{2 }}}}} in the Langasit e system, for{{{{{TiO}_{2 }}}}} i n{{{{{ Nd}_{ 3} {Ga }_{5 } {TiO }_{14 } }}}} was also undertaken. In another experiment,{{{{{ Y}_{ 2}{ O}_{3 } }}}} was substituted for{{{{{ La}_{2 } {O }_{ 3} }}}}. All of substitution possibilities were investigated through solid state reactions and analyzed with XRD. Further analysis was carried out with an SEM. Lastly, the dielectric constants of the sintered body were measured.

  • PDF

Atmosphere Effects in Low Temperature Pyrolysis of Chemical Solution Derived Pb(Zr, Ti) O3 Films

  • Hwang, Kyu-Seog;Lee, Hyung-Min;Kim, Byung-Hoon
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.199-203
    • /
    • 1998
  • $Pb(Zr, Ti)O_3$ (Pb:Zr:Ti=1:0.52:0.48) thin films were prepared on single crystal MgO(100) substrates by dipping-pyrolysis process using a solution of constituent metal naphthenates as starting materials. The solution was spin-coated onto substrate and the precursor films were pyrolyzed at $200^{\circ}C$ in air or at $200^{\circ}C$ in argon for 1, 2, 5 and 24h, followed by final heat treatment at $750^{\circ}C$. For all the films, highly (h00)/(00l)-oriented Pb$Pb(Zr, Ti)O_3$ thin films with smooth surfaces and crack-free were obtained, whereas thin film pyrolyzed in air for 24 h exhibited polycrystalline character. According to the pole-figure analysis, epitaxy of the product films was found to depend on pyrolysis atmosphere.

  • PDF

Effect of dopants(Tri-valent, Penta-valent) on the electrical and optical properties of SnO2 based transparent electrodes

  • Kim, G.W.;Sung, C.H.;Seo, Y.J.;Park, K.Y.;Heo, S.N.;Lee, S.H.;Koo, B.H.
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.394-397
    • /
    • 2012
  • In this work, we studied the influence of the dopant elements concentration on the properties of SnO2 thin films deposited by pulsed laser deposition. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Hall effect measurement and UV-Vis studies were performed to characterize the deposited films. XRD results showed that the films had polycrystalline nature with tetragonal rutile structure. FE-SEM micrographs revealed that the as deposited films composed of dense microstructures with uniform grain size distribution. All the films show n-type conduction and the best transparent conductive oxide (TCO) performance was obtained on 6 wt% Sb2O5 doped SnO2 film prepared at pO2 of 60mtorr and Ts of 500 ℃. Its resitivity, optical transmittance, figure of merit are 7.8 × 10-4 Ω cm, 85% and 1.2 × 10-2 Ω-1, respectively.

Microscopic Analysis of High Lithium-Ion Conducting Glass-Ceramic Sulfides

  • Park, Mansoo;Jung, Wo Dum;Choi, Sungjun;Son, Kihyun;Jung, Hun-Gi;Kim, Byung-Kook;Lee, Hae-Weon;Lee, Jong-Ho;Kim, Hyoungchul
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.568-573
    • /
    • 2016
  • We explore the crystalline structure and phase transition of lithium thiophosphate ($Li_7P_3S_{11}$) solid electrolyte using electron microscopy and X-ray diffraction. The glass-like $Li_7P_3S_{11}$ powder is prepared by the high-energy mechanical milling process. According to the energy dispersive X-ray spectroscopy (EDS) and selected area diffraction (SAD) analysis, the glass powder shows chemical homogeneity without noticeable contrast variation at any specific spot in the specimen and amorphous SAD ring patterns. Upon heating up to $260^{\circ}C$ the glass $Li_7P_3S_{11}$ powder becomes crystallized, clearly representing crystal plane diffraction contrast in the high-resolution transmission electron microscopy image. We further confirm that each diffraction spot precisely corresponds to the diffraction from a particular $Li_7P_3S_{11}$ crystallographic structure, which is also in good agreement with the previous X-ray diffraction results. We expect that the microscopic analysis with EDS and SAD patterns would permit a new approach to study in the atomic scale of other lithium ion conducting sulfides.

A study on the fracture strength of collarless metal-ceramic fixed partial dentures

  • Yoon, Jong-Wook;Kim, Sung-Hun;Lee, Jai-Bong;Han, Jung-Suk;Yang, Jae-Ho
    • The Journal of Advanced Prosthodontics
    • /
    • v.2 no.4
    • /
    • pp.134-141
    • /
    • 2010
  • PURPOSE. The objective of this study was to evaluate fracture strength of collarless metal-ceramic FPDs according to their metal coping designs. MATERIALS AND METHODS. Four different facial margin design groups were investigated. Group A was a coping with a thin facial metal collar, group B was a collarless coping with its facial metal to the shoulder, group C was a collarless coping with its facial metal 1 mm short of the shoulder, and group D was a collarless coping with its facial metal 2 mm short of the shoulder. Fifteen 3-unit collarless metal-ceramic FPDs were fabricated in each group. Finished FPDs were cemented to PBT (Polybutylene terephthalate) dies with resin cement. The fracture strength test was carried out using universal testing machine (Instron 4465, Instron Co., Norwood MA, USA) at a cross head speed of 0.5 mm/min. Aluminum foil folded to about 1 mm of thickness was inserted between the plunger tip and the incisal edge of the pontic. Vertical load was applied until catastrophic porcelain fracture occurred. RESULTS. The greater the bulk of unsupported facial shoulder porcelain was, the lower the fracture strength became. However, there were no significant differences between experimental groups (P > .05). CONCLUSION. All groups of collarless metal-ceramic FPDs had higher fracture strength than maximum incisive biting force. Modified collarless metal-ceramic FPD can be an alternative to all-ceramic FPDs in clinical situations.

Compaction and Sintering Behavior of Zirconia Powders : II. Sintering Behaviour (지르코니아 분말의 치밀화와 소결거동 : II. 소결거동)

  • Park, H.C.;Kim, K.;Kim, Y.W.;Lee, Y.B.;Oh, K.D.;Riley, Frank L.
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.6
    • /
    • pp.449-456
    • /
    • 1993
  • Sintering behaviour of zirconia powders prepared by different processing treatment was discussed. About >99% densities of theoretical were obtaiend on sintering at 140$0^{\circ}C$ for 2h in case of 300MPa uniaxially cold-pressed compact. But the lower densities were obtained on sintering above this temperature due to abnormal grain growth enabling the tetragonal to monoclinic phase transformation during cooling resulted in microcracks. All kinds of different dried powders exhibited nearly the same shrinkage behaviour with end-point shrinkage between 19 and 20%, and had maximum shrinkage rate (0.99~1.27%/min) around 120$0^{\circ}C$. During whole sintering process densification was mainly governed by grain growth and rearrangement of agglomerates. Heterogeneous abnormal grain growth and abrupt decrease in shrinkage were observed when continuous interagglomerate pore collapsed into isolated pores.

  • PDF

High Temperature Tribological Behaviour of Particulate Composites in the System SiC-TiC-TiB2 during Dry Oscillating Sliding

  • Wasche, Rolf;Klaffke, Dieter
    • The Korean Journal of Ceramics
    • /
    • v.5 no.2
    • /
    • pp.155-161
    • /
    • 1999
  • The tribological behaviour of monolithic SiC as well as SiC-TiC and SiC-TiC-$TiB_2$ particulate composite materials has been investigated in unlubricated oscillating sliding tests against $Al_2O_3$ at temperature in the range from room temperature up to $600^{\circ}C$. At temperatures below $600^{\circ}C$ the wear rate of the systems with the composite materials was up to 20 times lower than the wear of the $Al_2O_3$/SiC system and was dominated by the oxidation of the titanium phases. At $600^{\circ}C$ the oxidation rate of the TiC and -TEX>$TiB_2$ grains becomes predominant resulting in an enhanced wear rate of the composite rate of the TiC and TiB2 grains becomes predominant resulting in an enhanced wear rate of the composite materials. The coefficient of friction shows similar values for all materials of investigation, increasing from 0.25…0.3 at room temperature to 0.7…0.8 $600^{\circ}C$. The wear of the $Al_2O_3$/SiC system is mainly abrasive at temperatures above room temperature and is characterised by an enhanced wear of the alumina ball at $600^{\circ}C$.

  • PDF