• Title/Summary/Keyword: All-Speed Flow

Search Result 290, Processing Time 0.025 seconds

Analysis of Driving Characteristics of Elderly Drivers on Roads Using Vehicle Simulator (차량 시뮬레이터를 이용한 연속류 도로의 고령운전자 주행특성 분석)

  • LEE, GEUN-HEE;BAE, GI-MOK
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.146-159
    • /
    • 2021
  • vehicle simulator as part of an empirical analysis the driving characteristics of elderly drivers. To this end, the driving characteristics of the elderly driver from previous study review. he driving characteristics of the elderly the driving elderly driver and general driverIn summarizing these experimental results, the -test showed different driving characteristics from general drivers in all items except for one side of the lane, such as driving speed and driving operation (brake, throttle, steering operation) at a significance level of 95%. Second, when changing lanes, it was difficult for elderly driver to maintain speed and secure an appropriate distance between carslderly driver changed lanes even in inappropriate situations (short distances between cars). Third, in unexpected situation, elderly drivers needed more distance and time.

Effects of Molding Conditions on the Deflection of Rib Moldings of Fiber-reinforced Plastic Composites in Compression Molding (섬유강화 플라스틱 복합재료의 압축성형에서 리브 성형품의 휨에 미치는 성형조건의 영향)

  • Kim, Jin-Woo;Lee, Jung-Hoon;Lee, Dong-Gi
    • Journal of Advanced Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.285-290
    • /
    • 2017
  • Molding of body with ribs is the most difficult during flow molding process. The rib area is easy to be deformed at the rear side due to wall thickness variation. In this study, relationships between molding condition and deflection of rib-shaped part is investigated during the compression molding of fiber reinforced plastic composites, and the following results are derived. Polypropylene(PP), Polystyrene(PS), and stampable sheet(SS 40wt%) show the increment of deflection along with releasing temperature. For the correlation between incremental holding pressure load and deflection, stampable sheet exhibits lower deflection along with higher holding pressure, while PS shows significant increase of deflection with higher holding pressure, PP shows completely different characteristic, significant reduction of deflection along with higher holding pressure. Regarding to mold temperature and deflection, deflection amount of SS is the biggest, and PS shows the smallest. In addition, all three kinds shows the highest amount of deflection at 173C. Deflection is reduced when mold closing speed is increased. Amount of deflection in SS is larger and is not highly dependent on molding conditions like holding pressure and cooling parameters, compared with single component material like PP. This can be elucidated by anisotropic and inhomogeneous characteristics of glass fiber during filling process of stampable sheet composite.

Comparison of RANS, URANS, SAS and IDDES for the prediction of train crosswind characteristics

  • Xiao-Shuai Huo;Tang-Hong Liu;Zheng-Wei Chen;Wen-Hui Li;Hong-Rui Gao;Bin Xu
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.303-314
    • /
    • 2023
  • In this study, two steady RANS turbulence models (SST k-ω and Realizable k-ε) and four unsteady turbulence models (URANS SST k-ω and Realizable k-ε, SST-SAS, and SST-IDDES) are evaluated with respect to their capacity to predict crosswind characteristics on high-speed trains (HSTs). All of the numerical simulations are compared with the wind tunnel values and LES results to ensure the accuracy of each turbulence model. Specifically, the surface pressure distributions, time-averaged aerodynamic coefficients, flow fields, and computational cost are studied to determine the suitability of different models. Results suggest that the predictions of the pressure distributions and aerodynamic forces obtained from the steady and transient RANS models are almost the same. In particular, both SAS and IDDES exhibits similar predictions with wind tunnel test and LES, therefore, the SAS model is considered an attractive alternative for IDDES or LES in the crosswind study of trains. In addition, if the computational cost needs to be significantly reduced, the RANS SST k-ω model is shown to provide relatively reasonable results for the surface pressures and aerodynamic forces. As a result, the RANS SST k-ω model might be the most appropriate option for the expensive aerodynamic optimizations of trains using machine learning (ML) techniques because it balances solution accuracy and resource consumption.

Alternative Measures of Effectiveness for Evaluating ITS Project (ITS 사업평가를 위한 효과척도 대안)

  • Kim, Bong-Seok;Nam, Seung-Yeon;Ahn, Sun-Young;Son, Bong-Soo
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.3
    • /
    • pp.83-91
    • /
    • 2012
  • The objective of this study is to build a methodology for evaluating intelligent transportation systems (ITS) projects, by selecting measures of effectiveness (MOEs) and developing an approach to collect and process traffic data. While reviewing the existing MOEs and evaluation methodologies for ITS projects, several problems were found, such as the complication in delineating study areas, the absence of standardized evaluation methodologies, and the duplication in selecting MOEs. To tackle these problems, two MOEs capable of directly evaluating traffic conditions were chosen: i.e., average vehicle speed and traffic volume. Both MOEs can not only include all the functions of the existing MOEs, but also be simpler and more objective in evaluating real traffic conditions. The traffic volume can be measured by using either "cordon line" or "all point average" methods. On the other hand, measuring the average vehicle speed depends on site-specific characteristics such as traffic flow states (interrupted or uninterrupted) and traffic conditions (congested or uncongested). The present methodology is easily understandable for anyone and applicable for any ITS project, and is also expected to contribute to building a standardized evaluation system.

Numerical Analysis of Effects of Mold Cavity Shape on Bubble Defect Formation in UV NIL (UV NIL공정에서 몰드 중공부 형상과 기포결함에 대한 수치해석)

  • Lee, Hosung;Kim, Bo Seon;Kim, Kug Weon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.596-602
    • /
    • 2018
  • Nanoimprint lithography (NIL) is an emerging technology that enables cost-effective and high-throughput nanofabrication. In ultraviolet (UV) NIL, low-cost and high-speed production can be achieved using a non-vacuum environment at room temperature and low pressure. However, there are problems with the formation of bubble defects in such an environment. This paper investigates the shape of the mold cavity and the bubble defect formation in UV NIL in a non-vacuum environment. The bubble defect formation was simulated using two-dimensional flow analysis and the VOF method for commonly used cavity mold shapes (rectangular, elliptical, and triangular). The characteristics of the resist flow front and various contact angles were also analyzed. The shape of the mold cavity had a very significant effect on the bubble defect formation. For all cavity shapes, a smaller contact angle with the mold and larger contact angle with the substrate decreased the possibility of bubble defect formation. The elliptical shape was the most effective for preventing bubble defect formation.

Simulation of Pressure Oscillation in Water Caused by the Compressibility of Entrapped Air in Dam Break Flow (댐 붕괴 유동에서 갇힌 공기의 압축성에 의한 물의 압력 진동 모사)

  • Shin, Sangmook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.1
    • /
    • pp.56-65
    • /
    • 2018
  • Pressure oscillation caused by the compressibility of entrapped air in dam break flow is analyzed using an open source code, which is a two-phase compressible code for non-isothermal immiscible fluids. Since compressible flows are computed based on a pressure-based method, the code can handle the equation of state of barotropic fluid, which is virtually incompressible. The computed time variation of pressure is compared with other experimental and computational results. The present result shows good agreements with other results until the air is entrapped. As the entrapped air bubbles pulsate, pressure oscillations are predicted and the pressure oscillations damp out quickly. Although the compressibility parameter of water has been varied for a wide range, it has no effects on the computed results, because the present equation of state for water is so close to that of incompressible fluid. Grid independency test for computed time variation of pressure shows that all results predict similar period of pressure oscillation and quick damping out of the oscillation, even though the amplitude of pressure oscillation is sensitive to the velocity field at the moment of the entrapping. It is observed that as pressure inside the entrapped air changes quickly, the pressure field in the neighboring water adjusts instantly, because the sound of speed is much higher in water. It is confirmed that the period of pressure oscillation is dominated by the added mass of neighboring water. It is found that the temperature oscillation of the entrapped air is critical to the quick damping out of the oscillations, due to the fact that the time averaged temperature inside the entrapped air is higher than that of surrounding water, which is almost constant.

Anti-corrosion Properties of CrN Thin Films Deposited by Inductively Coupled Plasma Assisted Sputter Sublimation for PEMFC Bipolar Plates (유도 결합 플라즈마-스퍼터 승화법을 이용한 고분자 전해질 연료전지 분리판용 CrN 박막의 내식성연구)

  • You, Younggoon;Joo, Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.4
    • /
    • pp.168-174
    • /
    • 2013
  • In this study, low-cost, high-speed deposition, excellent processability, high mechanical strength and electrical conductivity, chemical stability and corrosion resistance of stainless steel to meet the obsessive-compulsive (0.1 mm or less) were selected CrN thin film. new price reduction to sputter deposition causes - the possibility of sublimation source for inductively coupled plasma Cr rods were attempts by DC bias. 0.6 Pa Ar inductively coupled plasmas of 2.4 MHz, 500 W, keeping Cr Rod DC bias power 30 W (900 V, 0.02 A) is applied, $N_2$ flow rate of 0.5, 1.0, 1.5 sccm by varying the characteristics of were analyzed. $N_2$ flow rate increases, decreases and $Cr_2N$, CrN was found to increase. In addition to corrosion resistance and contact resistance, corrosion resistance, electrical conductivity was evaluated. corrosion current density than $N_2$ 0 sccm was sure to rise in all, $N_2$ 1 sccm at $4.390{\times}10^{-7}$ (at 0.6 V) $A{\cdot}cm^{-2}$, respectively. electrical conductivity process results when $N_2$ 1 sccm 28.8 $m{\Omega}/cm^2$ with the lowest value of the contact resistance was confirmed that came out. The OES (SQ-2000) and QMS (CPM-300) using a reactive deposition process to add $N_2$ to maintain a uniform deposition rate was confirmed that.

Air Curtain Nozzle Design for Uniform Jet Expulsion (균일한 제트 분출을 위한 에어커튼 노즐 설계)

  • Park, Won-Hee;Chang, Hee-Chul
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.39-45
    • /
    • 2016
  • The optimal design of an air curtain nozzle installed at exits, such as fire doors, was determined in order to block the flow of smoke into safe zones. Smoke is the greatest cause of loss of life during the fire. To block the flow of smoke, the airflow must be expelled uniformly without eccentricity from the slits in the air curtain nozzle installed on the upper part of the opening. In order to accomplish this, factors such as air inflow volume, shape of the internal slits, and thickness of the external slits were considered as variables in this study, and a numerical analysis was performed under various conditions. This led to the selection of a final shape which led to the finalization of a design shape. The final shape was manufactured as a prototype and the results were compared and verified with the results of the numerical analysis. The relative error of the numerical analysis results was less than 1%, and the average speed of all the slits was tested, exhibiting a highly consistent tendency.

Numerical Study on Draining from Cylindrical Tank Using Stepped Drain Port (계단형 배수구를 가진 원통 용기에서의 배수 과정에 관한 수치해석 연구)

  • Son, Jong Hyeon;Park, Il Seouk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.1043-1050
    • /
    • 2014
  • An air-core vortex is generated during draining after stirring a rotating cylindrical tank or after filling it with water. The formation of the air-core vortex and the time of its formation are dependent on drain conditions such as the dimensions of the tank, the initial rotation or stirring speed, and the shape of the drain port. In this study, a draining process using a two-stage drain port was numerically investigated. The length and radius of the first drain stage located in the lower part of the drain port were kept constant, whereas the radius of the second drain stage was varied for simulating the draining process. The simulation was conducted by considering an axisymmetric swirling flow for all cases. The declining water level was monitored by an interface capturing method. Further, the effects of the radius of the second drain stage on the time of formation of the air-core vortex and the internal flow structure were investigated.

Simulation and Health Risk Evaluation of Indoor Air Quality Changes by Ventilation System in New Apartment (신축아파트 환기방식에 따른 실내공기질 변화와 이에 대한 시뮬레이션 및 건강 위해성 평가)

  • Bao, Wei;Jung, Jaeyoun;Jeong, Insoo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.23 no.4
    • /
    • pp.38-45
    • /
    • 2021
  • In this study, air quality conditions were identified and analyzed in real time, at the same time, living habits and ventilation methods were maintained in the daily life of residents, and thus, this present study focuses on the lifestyles of residents. Previous studies showed a difference from this study, focusing on the study on the effects of changes in indoor air quality on human health according to the indoor air quality process test standards of the Ministry of Environment. Formaldehyde concentrations exceeded all ventilation standards, but satisfied the organic standards of the Ministry of Environment when ventilation devices and air purifiers were activated. As such, it was investigated that a large amount of formaldehyde emission in the condo is initially ventilated, but a certain concentration is maintained. The change in PM2.5 concentration according to the ventilation method showed a clear difference. As a result of simulating indoor air flow during natural ventilation, the effects of wind speed and wind direction affect the flow rate of indoor air, and indoor polluted air is stagnant even in the presence of wind and is not completely discharged. When the risk assessment results are averaged on the day of measurement, the trends of change between adults and children are almost equivalent, but the results address that children are more sensitive to risk than adults.