• Title/Summary/Keyword: All-Speed Flow

Search Result 290, Processing Time 0.03 seconds

Effect of suction on flow of dusty fluid along exponentially stretching cylinder

  • Iqbal, Waheed;Jalil, Mudassar;Qazaq, Amjad;Khadimallah, Mohamed A.;Naeem, Muhammad N.;Hussain, Muzamal;Mahmoud, S.R.;Ghandourah, E.;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.10 no.3
    • /
    • pp.263-270
    • /
    • 2021
  • The present manuscript focuses the effects of suction on the flow of the dusty fluid along permeable exponentially stretching cylinder. Derived PDEs for this work are changed into ODEs by adopting right transformations. Numerical procedure is carried out for the obtained resultant equations by Shooting Technique in accordance with Runge-Kutta (RK-6) technique. Obtained results for the parameters namely, particle interaction parameter, suction parameter and Reynold number parameters are probed thoroughly. Some salient points are: (a) Fluid velocity decreases and the dust phase velocity rises for the higher values of particle interaction parameter; (b) more suction produces retarding velocities for both the phases; (c) high Reynold number slows down the fluid velocity while the speed of dust phase and (d) skin friction coefficient goes high for all these parameters.

Simulation Study for a UV Water Disinfection Unit Powered by a Photovoltaic System

  • Riahi, Said;Mami, Abdelkader;Minzu, Viorel
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.175-182
    • /
    • 2022
  • This work presents a simulation model for a specific UV disinfection system (UVDS) powered by a Photovoltaic System. The global UVDS also includes the electronic converters, Electronic Ballast, UV Lamp and Motor Pump. The equations that model the physical components' behaviour are connected to obtain a dynamic global model. The latter is converted in a Simulink/Matlab model, which allows to carry out simulation series concerning the entire UVDS. The physical parameters: the irradiation G and the temperature T, are considered as inputs. series of measurements carried out in order to show how these parameters affect the current, the voltage of the PVs and especially the value of the current of the UV lamp, on the other hand a study on the behavior and the evolution of the parameters of the motor pump such as the armature current, motor torque, speed of rotation and the water flow. The purpose of all this is to realize how important are the two parameters concerning the lamp current and the water flow because they are two very important factors to keep an adequate water quality.

A Convergence Study on Flow Analysis According to the Position of Radiator Inside Car (자동차 내부에서의 라디에이터 위치에 따른 유동해석에 관한 융합 연구)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.321-326
    • /
    • 2019
  • As the use of public transportation increases, many researches are being carried out to increase the fuel economy of car. The goal of this study is to design a front body in order to increase the fuel economy of car through three models of cars. All models were designed with CATIA program and the flow analyses on the air outside car by model were carried out with ANSYS program. At the driving speed of 90km/h, the longer the body, the less air resistance it received. So, it is thought that there is the effect to increase fuel economy. Through this study, it can be helpful to design the front car body that can maximize train efficiency. By utilizing the design data on flow analysis according to the position of radiator inside car in this study, the esthetic sense can be given by being grafted onto the real automotive part.

A Convergence Study on the Flow near Vehicle by the Configuration of Roof Box (루프 박스의 형상별 차량 주위에서의 유동에 관한 융합 연구)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.10
    • /
    • pp.99-105
    • /
    • 2019
  • In this study, the flow analysis around vehicle was carried out on various kinds of roof box models installed at the roof of vehicle. Through the analysis of fluid flow and pressure, we investigated which model was more suitable for driving. The four types of models were designed with their respective shapes of models 1, ${\beta}$, ${\delta}$ and ${\gamma}$, and the driving speed of car was set as 20 m/s. It was confirmed that the pressure for model ${\beta}$ became greatest compared to other models. And model ${\delta}$ has the lowest pressure among all models of roof boxes by installing a canoe with the structure for cable type. As the design data with the durability of roof box obtained on the basis of this study result are utilized, the esthetic sense can be shown by being grafted onto the car body at real life.

A Study on the Chemical Warfare Agents Dispersion Modelling in a Naturally Ventilated Indoor System (자연환기상태 실내공간에서의 화학작용제 확산 모델링 연구)

  • Kye, Young-Sik;Chung, Woo-Young;Kim, Yong-Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.133-140
    • /
    • 2008
  • The purpose of this study is to provide response methods to minimize the damage from chemical terrorism in a naturally ventilated indoor system using several types of dispersion simulations. Three chemical warfare agents such as sarin(GB), phosgene and chlorine gas which have high potential to be used in terror or to be involved with accidents were selected in this simulation. Fire dynamic simulation based on Large Eddy Simulation which is effective because of less computational effort and detailed expression of the dispersion flow was adopted to describe the dispersion behavior of these agents. When the vent speed is 0.005m/s, the heights of 0.1 agent mass fraction are 0.9m for sarin, 1.0m for phosgene and 1.1m for chlorine gas, and the maximum mass fraction are 0.27 for all three agents. However, when the vent speed is increased to 0.05m/s, the heights of 0.1 agent mass fraction become 1.6m for all three agents and maximum mass fraction inside the room increase to 0.70 for sarin, 0.58 for phosgene and 0.53 for chlorine gas. It is shown that molecular weight of the agents has an important role for dispersion, and it is important to install ventilation system with height less than 1.6m to minimize the damage from chemical toxicity.

Bottom Friction on Mobile Coastal Beach (이동장 해저면에서의 마찰력)

  • 유동훈;이동수
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.2
    • /
    • pp.63-71
    • /
    • 1992
  • A solution method is developed for computing the bed shear stress driven by combined wave and current flow on a natural mobile coastal beach. An empirical equation is introduced to determine the shape of ripples formed on the natural sandy beach. The model being based on the Prandtl's mixing length theory, the effect of arbitrarily-angled interaction is included in the estimation of current velocity reduction and all numerical integrations are expressed by explicit approximate equations to improve the computation speed. In addition the computed sediment transport rates were compared with the measured values reported in literature. using the refined bottom friction model considering the ripple formation.

  • PDF

Numerical Analyses on Wall-Attaching Offset Jet with Various Turbulent $k-{\varepsilon}$ Models and Skew-Upwind Scheme (다양한 $k-{\varepsilon}$ 난류모델과 Skew-Upwind 기법에 의한 단이 진 벽면분류에 대한 수치해석)

  • Seo, Ho-Taek;Boo, Jung-Sook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.224-232
    • /
    • 2000
  • Four turbulent $k-{\varepsilon}$ models (i.e., standard model, modified models with streamline curvature modification and/or preferential dissipation modification) are applied in order to analyze the turbulent flow of wall-attaching offset jet. For numerical convergence, this paper develops a method of slowly increasing the convective effect induced by skew-velocity in skew-upwind scheme (hereafter called Partial Skewupwind Scheme). Even though the method was simple, it was efficient in view of convergent speed, computer memory storage, programming, etc. The numerical results of all models show good prediction in first order calculations (i.e., reattachment length, mean velocity, pressure), while they show some deviations in ·second order (i.e., kinetic energy and its dissipation rate). Like the previous results obtained by upwind scheme, the streamline curvature modification results in better prediction, while the preferential dissipation modification does not.

Development of Integrated Simulator for AC Traction Power Supply System (윈도우즈 기반의 교류 전기철도 급전시스템 통합 시뮬레이터 개발)

  • Kim, Joo-Rak;Kim, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.76-81
    • /
    • 2010
  • This paper describes the development of integrated simulator with GUI(Graphic User Interface) for traction power supply system. This simulator consists of a lot of calculation modules such as TPS, train time schedule, line constant, and power supply system analysis. Each module has input and output structure respectively. The algorithms of all modules have confirmed the validity to comparison with field test that is performed on both high speed railway line and conventional line.

Black Carbon Measurement using a Drone (드론을 활용한 대기 중 블랙카본 농도 측정)

  • Lee, Jeonghoon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.486-492
    • /
    • 2018
  • Black carbon concentrations were measured along the altitude at various locations using a drone coupled with a small black carbon detector. The measurement locations are Eunseok Mountain, downtown, four places in KOREATECH campus, Byeongcheon, Cheonan, Chungcheongnam-do, and Chungbu Expressway in Ochang-eup, Cheongju, Chungcheongbuk-do. The average concentration of black carbon measured in Eunseok Mountain was $1.64{\mu}g/m^3$ and the average concentration near the Chungbu Expressway was measured to be $3.86{\mu}g/m^3$. The average concentrations of four places inside campus ranged from 1.37 to $2.67{\mu}g/m^3$. The concentration of black carbon at all places tended to be slightly decreased according to the altitude, but the influence of pollution source, geometry, wind speed, and wind direction are thought to be larger than the effect of altitude. Effect of air flow caused by drone flight on the measurement of black carbon were investigated and it resulted in that the measurement of BC concentration was affected by less than 5%.

Comparison of cutting performance of an AWJ with several types of abrasives (Water jet 절단에서의 연마재 종류별 성능 비교 시험)

  • Choon Sunwoo;;Ryu Chang ha;Kwng soo Kwon
    • Tunnel and Underground Space
    • /
    • v.6 no.2
    • /
    • pp.175-183
    • /
    • 1996
  • Linear cutting tests on granite were conducted to evaluated the cutting performance of abrasive water jet(AWJ) using several types of abrasives. The abrasives used in the tests were grarnet, alumimum oxide, and silicon carbide. And one type of granite which is comercially known as "KeuchangSuk" was used as workpiece throughout the tests. The results from the tests were described in terms of cutting depth and abrasive productivity. Authors tried to confirm the effects of the operational parameters of abrasive mass flow rate, water pressure, and traverse speed of nozzle on cutting depth and presented almost all the data obtained in the tests. Abrasive productivity can be defined as the area of kerf wall cut by unit weight of abrasive and is an important factor to evaluated the cutting ability of abrasive and assess the cost effectiveness of an AWJ system. In the tests the maximum abrasive productivities of garnet, alumina, and silicon carbide were about 0.21, 0.24, and 0.20 $\textrm{cm}^2$ respectively under similar operational conditions.onditions.

  • PDF