• 제목/요약/키워드: All Solid State.

검색결과 390건 처리시간 0.027초

Study of Nonstoichiometry and Physical Properties of the $Nd_{1-x}(Ba_{0.40}Mg_{0.60})_{1+x}FeO_{4-y}$ System

  • 요철현;노권순;장순호
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권3호
    • /
    • pp.261-264
    • /
    • 1995
  • A series of samples of the Nd1-x(Ba0.40Mg0.60)1+xFeO4-y (x=0.00, 0.10, 0.20, and 0.30) system has been synthesized at 1450 ℃ under an atmospheric air pressure. The x-ray powder diffraction analysis of the solid solutions assigns the structure of all the compositions to orthorhombic system. Mohr salt analysis shows that τ and y values increase with x value and nonstoichiometric chemical formulas of the system can be formulated from the x, τ, and y values. Oxygen vacancies are distributed along c-axis in the perovskite layer. The magnetic ordering temperature remains unchanged with x value. Electrical conductivity and activation energy depend only on the mixed valence state of Fe ion. Conduction mechanism can be suggested as the hopping of electron between eg orbitals of Fe3+ and Fe4+ ions through Fe3+-O-Fe4+ bonds. Magnetic susceptibility and electrical conductivity are discussed with the nonstoichiometric chemical formulas.

Formation CubeSat Constellation, SNIPE mission

  • Lee, Jaejin
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.58.4-59
    • /
    • 2021
  • This presentation introduces Korea's SNIPE (Small scale magNespheric and Ionospheric Plasma Experiment) mission, formation flying CubeSat constellation. Observing particles and waves on a single satellite suffers from inherent space-time ambiguity. To observe spatial and temporal variations of the micro-scale plasma structures on the topside ionosphere, four 6U CubeSats (~ 10 kg) will be launched into a polar orbit of the altitude of ~500 km in 2021. The distances of each satellite will be controlled from 10 km to more than 100 km by formation flying algorithm. The SNIPE mission is equipped with identical scientific instruments, solid-state telescope, magnetometer, and Langmuir probe. All the payloads have a high temporal resolution (sampling rates of about 10 Hz). Iridium modules provide an opportunity to upload changes in operational modes when geomagnetic storms occur. SNIPE's observations of the dimensions, occurrence rates, amplitudes, and spatiotemporal evolution of polar cap patches, field-aligned currents (FAC), radiation belt microbursts, and equatorial and mid-latitude plasma blobs and bubbles will determine their significance to the solar wind-magnetosphere-ionosphere interaction and quantify their impact on space weather.

  • PDF

Features of Malignancy Prevalence among Children in the Aral Sea Region

  • Mamyrbayev, Arstan;Dyussembayeva, Nailya;Ibrayeva, Lyazzat;Satenova, Zhanna;Tulyayeva, Anara;Kireyeva, Nurgul;Zholmukhamedova, Dinara;Rybalkina, Dina;Yeleuov, Galymzhan;Yeleuov, Almasbek
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권12호
    • /
    • pp.5217-5221
    • /
    • 2016
  • Objective: A study of primary cancer morbidity among children and subsequent calculation of average annual incidence were carried out for boys and girls, and young men and women in Kazakhstan. Methods: The investigated population lived in three areas of the Aral Sea region: designated catastrophe (Aral, Kazalt, Shalkar regions), crisis (Zhalagash, Karmakshy, Shiely regions), pre-crisis (Irgiz, Arys, Ulytau regions). Zhanaarka region of Karaganda oblast was applied as a control. Parameters were retrospective analyzed for the 10 years from 2004 to 2013. Result: The results indicate that indices of children cancer morbidity were slightly higher in the Aral Sea region than in the control district, but they were comparable with similar data from studies in other regions. In all areas of the Aral Sea region, except for Ulytau, primary cancer morbidity exceeded the control level by 1.3-2.7 times (4.7%000). Hematological malignancies, including solid tumors - tumors of musculoskeletal system and skin, digestive system, brain and central nervous system predominated. Stress levels in zones of the Aral Sea region were slightly higher in the crisis zone than in the catastrophe zone that can be explained by the phenomenon of wave-like dynamics of disease growth risk. Gender differences in characteristics of malignancy formation were not more pronounced in the studied region. Conclusion: Indices of children cancer are slightly higher in the Aral Sea region than in the control area of Kazakhstan, but they are comparable to results for other regions.

Increasing Teamwork, Organizational Commitment and Effectiveness through the Implementation of Collaborative Resolution

  • MARTONO, S.;KHOIRUDDIN, Moh.;WIJAYANTO, Andhi;RIDLOAH, Siti;WULANSARI, Nury Ariani;UDIN, Udin
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권6호
    • /
    • pp.427-437
    • /
    • 2020
  • This study seeks to examine empirically the effect of leadership style on organizational commitment and organizational effectiveness. The data are from all departments of the undergraduate program at the State University in Central Java, Indonesia. The study comprises all divisions of the undergraduate program, which amounted to 207 people. The method for sampling is based on simple random sampling. Structural equation modeling (SEM) is applied in order to analyze the data. The results show that integrative adaptive leadership style has a positive effect on teamwork and affective commitment. Therefore, in order to improve teamwork, the organization should be assisted in completing the introduction of collaborative conflict resolution. Moreover, affective commitment positively affects organizational effectiveness. Thus, it can be said that efforts to improve the organizational effectiveness, should be supported by affective commitment. The study further revealed that integrative adaptive leadership style has a positive effect on teamwork. This means better execution of integrative adaptive leadership, higher level of coordination and vice versa. Each member has different responsibilities and duties, and it can be done or resolved in different ways. If the leader can accommodate the creativity of the faculty and staff, a solid team can be formed.

전 전기자동차용 리튬이온 이차전지 기술동향 (Li-Ion Traction Batteries for All-Electric Vehicle)

  • 조만;나도백;길상철;김상우
    • 에너지공학
    • /
    • 제20권2호
    • /
    • pp.109-122
    • /
    • 2011
  • 온실가스배출억제와 수입원유저감을 위하여 전 전기자동차의 도입이 활발하게 추진되고 있다. 이의 항속거리 연장을 위한 리튬이온 이차전지 소재와 공정개발 등의 연구개발 동향, 그리고 양산체제 구축 중에 있는 리튬이온 이차전지 메이커의 계획도 조사하였다. 완성차메이커와는 수평분업적인 협력관계가 형성되고 있음을 볼 수 있었다.

Highly Efficient Flexible Perovskite Solar Cells by Low-temperature ALD Method

  • Kim, Byeong Jo;Kwon, Seung Lee;Jung, Hyun Suk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.469.2-469.2
    • /
    • 2014
  • All-solid-state solar cell based on Chloride doped organometallic halide perovskite, (CH3NH3)PbIxCl3-x, has achieved a highly power conversion efficiency (PCE) to over 15% [1] and further improvements are expected up to 20% [2]. In this way, solar cells using novel light absorbing perovskite material are actively being studied as a next generation solar cells. However, making solution-process require high temperature up to $500^{\circ}C$ to form compact hole blocking layer and sinter the mesoporous oxide scaffold layer. Because of this high temperature process, fabrication of flexible solar cells on plastic substrate is still troubleshooting. In this study, we fabricated highly efficient flexible perovskite solar cells with PCE in excess of 11%. Atomic layer deposition (ALD) is used to deposit dense $TiO_2$ as hole blocking layer on ITO/PEN substrate. The all fabrication process is done at low temperature below $150^{\circ}C$. This work shows that one of the important blueprint for commercial use of perovskite solar cells.

  • PDF

Impact of Ba Substitution on the Magnetocaloric Effect in La1-xBaxMnO3 Manganites

  • Hussain, Imad;Anwar, M.S.;Kim, Eunji;Koo, Bon Heun;Lee, Chan Gyu
    • 한국재료학회지
    • /
    • 제26권11호
    • /
    • pp.623-627
    • /
    • 2016
  • $La_{1-x}Ba_xMnO_3$ (x = 0.30, 0.35 and 0.40) samples have been prepared by solid-state reaction method. The X-ray diffraction (XRD) study showed that all the samples crystallized in a rhombohedral structure with an R-3c space group. Variation of the magnetization as a function of the temperature and applied magnetic field was carried out. All the samples revealed ferromagnetic to paramagnetic (FM-PM) phase transition at the Curie temperature $T_C{\sim}342K$. The magnetic entropy change was also studied through examination of the measured magnetic isotherms M(H, T) near $T_C$. The magnetocaloric effect was calculated in terms of the isothermal magnetic entropy change. The maximum entropy change reaches a value of 1.192 J/kgK under a magnetic field change of 2.5T for the $La_{0.6}Ba_{0.4}MnO_3$ composition. The relative cooling power (RCP) is 79.31 J/kg for the same applied magnetic field.

저온소결 8/65/35 PLZT 세라믹의 전기열량 효과 (Electrocaloric Effect of 8/65/35 PLZT Ceramics Sintered at Low Temperature)

  • 최승훈;라철민;류주현
    • 한국전기전자재료학회논문지
    • /
    • 제28권10호
    • /
    • pp.615-619
    • /
    • 2015
  • In this study, in order to develop the composition ceramics with the excellent electrocaloric properties, 8/65/35 PLZT ceramics were fabricated by the conventional solid-state method with the addition of $Bi_2O_3$, CuO, $Li_2CO_3$ and the variation of sintering temperature from $930^{\circ}C$ to $990^{\circ}C$. The XRD pattern of all specimens indicated general perovskite structure and the rhombohedral phase were observed. Curie temperature ($T_c$) of all specimens was observed in the vicinity of about $190^{\circ}C$. Density, coercive field and remnant polarization of the specimen sintered at $950^{\circ}C$ was $7.55g/cm^3$, 8.895 kV/cm, $11.22{\mu}C/cm^2$, respectively. EC effect of PLZT ceramics was measured by indirect method and the temperature change ${\Delta}T$ due to the electrocaloric effect was calculated by Maxwell's relations. ${\Delta}T$ of ceramic sintered at $950^{\circ}C$ was $0.21^{\circ}C$ under application of 40 kV/cm at $190^{\circ}C$.

Hydrogen Evolution from Biological Protein Photosystem I and Semiconductor BiVO4 Driven by Z-Schematic Electron Transfer

  • Shin, Seonae;Kim, Younghye;Nam, Ki Tae
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.251.2-251.2
    • /
    • 2013
  • Natural photosynthesis utilizes two proteins, photosystem I and photosystem II, to efficiently oxidize water and reduce NADP+ to NADPH. Artificial photosynthesis which mimics this process achieve water splitting through a two-step Z-schematic water splitting process using man-made synthetic materials for hydrogen fuel production. In this study, Z-scheme system was achieved from the hybrid materials which composed of hydrogen production part as photosystem I protein and water oxidizing part as semiconductor BiVO4. Utilizing photosystem I as the hydrogen evolving part overcomes the problems of existing hydrogen evolving p-type semiconductors such as water instability, expensive cost, few available choices and poor red light (>600 nm) absorbance. Some problems of photosystem II, oxygen evolving part of natural photosynthesis, such as demanding isolation process and D1 photo-damage can also be solved by utilizing BiVO4 as the oxygen evolving part. Preceding research has not suggested any protein-inorganic-hybrid Z-scheme composed of both materials from natural photosynthesis and artificial photosynthesis. In this study, to realize this Z-schematic electron transfer, diffusion step of electron carrier, which usually degrades natural photosynthesis efficiency, was eliminated. Instead, BiVO4 and Pt-photosystem I were all linked together by the mediator gold. Synthesized all-solid-state hybrid materials show enhanced hydrogen evolution ability directly from water when illuminated with visible light.

  • PDF

Effects of storage temperature on quality characteristics of texturized vegetable protein

  • Seul Lee;Sun Young Jung;Mi Sook Seo;Chan Soon Park
    • 한국식품저장유통학회지
    • /
    • 제31권1호
    • /
    • pp.46-63
    • /
    • 2024
  • This study evaluated the impact of storage temperature on the quality characteristics of texturized vegetable protein (TVP). TVP was prepared by mixing defatted Daewon soybean flour at 80℃, gluten, and corn starch in a 5:3:2 ratio, which was then extruded at a screw speed of 250 rpm and a barrel temperature of 190℃ with moisture addition at 9 rpm. Subsequently, the extruded TVP was vacuum-sealed in polyethylene packaging and stored at -20℃, 0℃, and 4℃ for 9 days. Texture analysis revealed that the curing rate followed 4℃ > 0℃ > -20℃ sequence. No significant color variation was observed across the storage conditions, although water content increased at all temperatures. Notable changes were detected in moisture absorption capacity (%) and solid leaching (%), following the order of -20℃ > 0℃ > 4℃. The turbidity of the solution released during cooking varied, with the highest to the lowest sequence being -20℃ > 4℃ > 0℃, while pH levels remained neutral. Regarding free amino acids, sweetness and textural quality improved with storage across all temperatures, whereas bitterness components diminished at 4℃. The study suggests that refrigerated storage at 4℃ is a viable method for distributing TVP, which was previously distributed only in a frozen and dry state.