• Title/Summary/Keyword: All Purpose Collimator

Search Result 45, Processing Time 0.022 seconds

Clinical Usefulness of 99mTc-DMSA Renal SPECT Using High Sensitivity-All Purpose Collimator for Pediatric Patients (고감도 범용성 콜리메이터를 이용한 소아 환자 99mTc-DMSA 신장 SPECT의 유용성)

  • Kim, Jin-Eui;Kim, Jung-Soo;Han, Jae-Bok;Choi, Nam-Gil
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.3
    • /
    • pp.219-231
    • /
    • 2016
  • $^{99m}Tc$-DMSA planar scan that can analyze the functions of kidney quantitatively provides less information on a lesion than tomography scanning. Therefore, this study applied a high sensitivity all-purpose collimator that is sensitive to photonic signals to $^{99m}Tc$-DMSA and carried out a clinical scan with single photon emission computed tomography (SPECT). And diagnostic accuracy and time requirement of were analyzed to know the clinical usefulness of the applied scanning method. 10 subjects were intravenously injected with radiopharmaceutical product (1.0-1.2 MBq/kg) and scanned by a gamma camera with planar scanner (high resolution (HR)-mode, $256{\times}256$, 50 kcts/view, 4 image) and SPECT (HR / high sensitive (HS)-mode, $128{\times}128$, step and shoot, $180^{\circ}$, variable sec/angle, total 64 frame, OSEM reconstruction), respectively. The collected data was compared with an analysis program. The results showed that HS-mode SPECT detected total counts 1.8-5.6 times more than planar scan. Relative renal function evaluated based on the counts was not significantly different by two scanning methods (p=0.96) and it turned out that test time was shortened by 39% when HS-mode SPECT was used. Therefore, SPECT using HR, HS-mode collimator could analyze renal function more quantitatively than using planar scan and the former could diagnose the location information of a lesion more accurately than the latter as well as shortened test time requirement, which demonstrated the clinical usefulness of $^{99m}Tc$-DMSA renal SPECT using high sensitivity all purpose collimator.

A Study on the Improvement of Penumbra and Dose Distribution in the Multileaf Collimator Field Edge (다엽콜리매이터(Multileaf Collimator) 조사야의 반음영 및 선량분포 개선에 대한 연구)

  • Kim CW.;Kim HN.;Lim CK.;Ra SK.;Park BS.
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.10 no.1
    • /
    • pp.88-93
    • /
    • 1998
  • Multileaf collimator is essential equipment in conformal radiation therapy, however the use is limitted by increase of penumbra width and undulating dose distribution at the field edge. The purpose of this study is to improve the penumbra and dose distribution in the multileaf collimator field edge. Measurement were performed with X-omat V film in solid water phantom using 6MV photon beam from Siemens linear accelerator. All the measurement were made along the central axis of $5{\times}5cm,\;10{\times}10cm$ circular field for constant SSD of 100 cm. To improve the penumbra and dose distribution collimator was rotated by 15 degrees from 0 to 90 degrees (collimator rotation method) and center was shifted to the longitudinal direction by fourth of lead width (center shift method). We compare the penumbra and dose distribution at the field edge to alloy block. Dose distribution and penumbra width at the feild edge of MLC showed undulated dose pattern and increased penumbra compared with alloy block. However, in the collimator rotation method and center shift method we abtained simular results with alloy block. Through the study we expected that clinical use of MLC will be increase.

  • PDF

The Study on Usefulness of LEAP Collimator in Lung Ventilation SPECT (Lung Ventilation SPECT에서 LEAP Collimator의 유용성에 관한 연구)

  • Kim, Jung Soo;Kim, Soo Mee;Kim, Jin Eui;Lee, Jae Sung;Lee, Dong Soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.18-24
    • /
    • 2012
  • Purpose : Although lung ventilation SPECT (LV-SPECT) has a good sensitivity in detection of deep lung lesions, it is difficult to apply the LV-SPECT to patients having breathing problems due to limited examination time. In this study, we evaluated the usefulness of LEAP collimator, which provides high detection sensitivity and tolerable resolution, for the LV-SPECT in terms of diagnostic accuracy and examination time. Materials and Methods : Four volunteers inhaled Technegas (370 MBq) and the lung ventilation planar scan (LVPS, 300 counts/view (cpv)) with LEHR collimator was performed using Siemens E.cam scanner as a reference test. LV-SPECT scans were performed with three collimators, LEHR, LEUHR, and LEAP, in low (7 kcpv) and high (70 kcpv) counting modes. The count ratios of left (LT) and right (RT) lung segments were calculated on the geometric mean view of anterior and posterior images for LVPS and on the summed coronal images of LV-SPECT, respectively. Comparing to LVPS, the usefulness of three different collimators for LV-SPECT was evaluated through statistical analysis (paired t-test), on count ratios of lung segments. Results : The average LT:RT ratio in LVPS was 47:53. For LV-SPECT, there were negligible difference of the LT:RT ratios (48:52 on average) among three different collimators in low and high counting modes. Comparing to standard LVPS with LEHR, all LV-SPECTs with different collimators resulted in similar diagnostic accuracy through paired t-test (p>0.05). The scan time in LVPS (6 views) was 17.3 min. For LV-SPECT (128 views) in low counting mode, it took 18.7 (LEUHR), 15.0 (LEHR), and 12.3 min (LEAP), respectively. Conclusion : Comparing to standard LVPS, the LV-SPECT with LEAP in low counting mode provided the comparable diagnostic accuracy in addition to shortened scan time.

  • PDF

Sensing changes in tumor during boron neutron capture therapy using PET with a collimator: Simulation study

  • Yang, Hye Jeong;Yoon, Do-Kun;Suh, Tae Suk
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2072-2077
    • /
    • 2020
  • The purpose of this study was to demonstrate the feasibility of sensing changes in a tumor during boron neutron capture therapy (BNCT) using a Monte Carlo simulation tool. In the simulation, an epi-thermal neutron source and a water phantom including boron uptake regions (BURs) were simulated. Moreover, this simulation also included a detector for positron emission tomography (PET) scanning and an adaptively-designed collimator (ADC) for PET. After the PET scanning of the water phantom, including the 511 keV source in the BUR, the ADC was positioned in the PET's gantry. Single prompt gamma rays were collected through the ADC during neutron irradiation. Then, single prompt gamma ray-based tomography images of different sized tumors were acquired by a four-step process. Both the signal-to-noise ratio (SNR) and tumor size were analyzed from each step image. From this analysis, we identified a decreasing trend of both the SNR and signal intensity as the tumor size decreased, which was confirmed in all images. In conclusion, we confirmed the feasibility of sensing changes in a tumor during BNCT using PET and an ADC through Monte Carlo simulation.

Quality Assurance of Leaf Speed for Dynamic Multileaf Collimator (MLC) Using Dynalog Files (Dynalog file을 이용한 동적다엽조준기의 Leaf 속도 정도관리 평가)

  • Kim, Joo Seob;Ahn, Woo Sang;Lee, Woo Suk;Park, Sung Ho;Choi, Wonsik;Shin, Seong Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.305-312
    • /
    • 2014
  • Purpose : The purpose of this study is to analyze the mechanical and leaf speed accuracy of the dynamic multileaf collimator (DMLC) and determine the appropriate period of quality assurance (QA). Materials and Methods : The quality assurance of the DMLC equipped with Millennium 120 leaves has been performed total 92 times from January 2012 to June 2014. The the accuracy of leaf position and isocenter coincidence for MLC were checked using the graph paper and Gafchromic EBT film, respectively. The stability of leaf speed was verified using a test file requiring the leaves to reach maximum leaf speed during the gantry rotation. At the end of every leaf speed QA, dynamic dynalog files created by MLC controller were analyzed using dynalog file viewer software. This file concludes the information about the planned versus actual position for all leaves and provides error RMS (root-mean square) for individual leaf deviations and error histogram for all leaf deviations. In this study, the data obtained from the leaf speed QA were used to screen the performance degradation of leaf speed and determine the need for motor replacement. Results : The leaf position accuracy and isocenteric coincidence of MLC was observed within a tolerance range recommanded from TG-142 reports. Total number of motor replacement were 56 motors over whole QA period. For all motors replaced from QA, gradually increased patterns of error RMS values were much more than suddenly increased patterns of error RMS values. Average error RMS values of gradually and suddenly increased patterns were 0.298 cm and 0.273 cm, respectively. However, The average error RMS values were within 0.35 cm recommended by the vendor, motors were replaced according to the criteria of no counts with misplacement > 1 cm. On average, motor replacement for gradually increased patterns of error RMS values 22 days. 28 motors were replaced regardless of the leaf speed QA. Conclusion : This study performed the periodic MLC QA for analyzing the mechanical and leaf speed accuracy of the dynamic multileaf collimator (DMLC). The leaf position accuracy and isocenteric coincidence showed whthin of MLC evaluation is observed within the tolerance value recommanded by TG-142 report. Based on the result obtained from leaf speed QA, we have concluded that QA protocol of leaf speed for DMLC was performed at least bimonthly in order to screen the performance of leaf speed. The periodic QA protocol can help to ensure for delivering accurate IMRT treatment to patients maintaining the performance of leaf speed.

A study on Dose of the Junction in Radiotherapy of Breast Cancer including SCL. (쇄골상부림프절을 포함한 유방암 방사선 치료 시 접합부 선량에 관한 고찰)

  • Jung, Woo Hyun;Hong, Joo Wan;Won, Hui Su;Chang, Nam Jun;Choi, Byeong Don
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.93-100
    • /
    • 2017
  • Purpose: A purpose of this study was to compare dose of junction between breast and SCL fields in radiation therapy by MLC located at the junction. Materials and Methods: With 6 MV of 21EX-S equipped with 120-leaf Millennium MLC, treatment plans were designed with 30 patients who underwent radiation therapy using TFT. Plan 1 where the MLC was all used at the junction. In plan 2 and plan 3, MCLs were retracted 5 mm from breast and SCL, respectively. Plan 4 with all of MLC retracted at the junction were designed. In all of the plans, collimator angle for SCL field was divided into $0^{\circ}$ and $270^{\circ}$. To verify junction dose, the dose at 3cm depth of junction was compared with average value by MapCHECK. Results: In case of the SCL field with $0^{\circ}$ collimator angle, average value of D3cm was 4131.1, 4215.9, 4351.4, and 4423.0 cGy. In case of the SCL field with $270^{\circ}$ collimator angle, average value of D3cm was 4044.3, 4246.7, 4291.1, and 4441.2 cGy. In plan1 and 3, change in average dose depending on collimator angle was changed more significantly than paln2 and 4. Dose measured at 3cm depth of junction was similar to treatment plan. Conclusion: In radiation therapy plan for breast cancer with SCL, retracting MLCs from junction between breast and SCL fields will lead to decrease effect of dose of the junction.

  • PDF

Feasibility Study of Vertical Multileaf Collimator for Determination of Irradiation Size (수직형 다엽 콜리메이터의 방사선 조사면 크기 결정을 통한 유용성 연구)

  • Lee, Chang-Yeol;Son, Ki-Hong;Shin, Sang-Hun;Park, Seung-Woo;Lee, Dong-Han;Jung, Hai-Jo;Choi, Mun-Sik;Oh, Won-Young;Kim, Kum-Bae;Yang, Gwang-Mo;Ji, Young-Hoon
    • Progress in Medical Physics
    • /
    • v.22 no.1
    • /
    • pp.3-11
    • /
    • 2011
  • The purpose of this study was to evaluate feasibility of Vertical Multileaf Collimator for determination of irradiation size using Vertical Multileaf Collimator and lead block to determine 4 different irradiation shape in case of Co-60 gamma-ray and 6 MV X-ray. We chose ion chamber, glass dosimeter and EBT chromic film to compare with Vertical Multileaf Collimator results and lead block results. In case of Co-60 gamma-ray and 6 MV X-ray, the central axis point dose normalized at reference field of lead block with ion chamber results for Vertical Multileaf Collimator were estimated higher than lead block about 5.1%, 4.2%. In case of Co-60 gamma-ray, the central axis point dose normalized at reference field of lead block with glass dosimeter results for Vertical Multileaf Collimator were estimated higher than lead block about 2.2%, 7.8%, 7.2%, 4.0% for reference, circle, triangle, cross field, respectively. In case of 6 MV X-ray, the central axis point dose normalized at reference field of lead block with glass dosimeter results for Vertical Multileaf Collimator were estimated higher than lead block about 6.7%, 6.2%, 3.8%, 6.2% for reference, circle, triangle, cross field, respectively. The results of EBT chromic film, Vertical Multileaf Collimator of penumbra size for all irradiation shape was smaller than lead block of those size that 2.0~3.5 mm for Co-60 gamma-ray, 0.5~1.0 mm for 6 MV X-ray. The results from this study, radiation treatment volume that results in shielding block can be minimized. In addition, during radiation treatment for 2, 3-dimensional radiation therapy using a Vertical Multileaf Collimator of this survey can be used to determine variety of irradiation fields.

Influence of Iodinated Contrast Media and Paramagnetic Contrast Media on Changes in Uptake Counts of 99mTc

  • Cho, Jae-Hwan;Lee, Jin-Hyeok;Park, Cheol-Soo;Lee, Sun-Yeob;Lee, Jin;Moon, Deog-Hwan;Lee, Hae-Kag
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.248-254
    • /
    • 2014
  • The purpose of this study is to figure out how uptake counts of technetium ($^{99m}Tc$) among radioisotopes in the human body are affected if computed tomography (CT), magnetic resonance imaging (MRI) and isotope examination are performed consecutively. $^{99m}Tc$ isotope material, iodinated contrast media for CT and paramagnetic contrast media for magnetic resonance (MR) were used as experimental materials. First, $^{99m}Tc$ was added to 4 cc normal saline in a test tube. Then, 2 cc of CT contrast media such as $Iopamidol^{(R)}$ and $Dotarem^{(R)}$ were diluted with 2 cc normal saline, and 2cc of MRI contrast media such as $Primovist^{(R)}$ and $Gadovist^{(R)}$ were diluted with 2 cc normal saline. Each distributed contrast media was a total of 4 cc and included 10m Ci of $^{99m}Tc$. A gamma camera, a LEHR (Low energy high resolution) collimator and a pin-hole collimator were used for image acquisition. Image acquisition was repeated a total of 6 times and 120 frames were obtained and uptake counts of $^{99m}Tc$ were measured (from this procedure). In this study, as a result of measuring the uptake counts of $^{99m}Tc$ using the LEHR collimator, the uptake counts were less measured in all contrast media than normal saline as a reference. In particular, the lowest uptake counts were measured when $Gadovist^{(R)}$, contrast media for MRI, was used. However, the result of measuring the uptake counts of $^{99m}Tc$ using the pin-hole collimator showed higher uptake counts in all contrast media, except for $Iopamidol^{(R)}$, than normal saline as a reference. The highest uptake counts were measured particularly when $Primovist^{(R)}$, contrast media for MRI, was used. In performing the gamma camera examination using contrast media and $^{99m}Tc$, it is considered significant to check the changes in the uptake counts to improve various diagnosis values.

Investigation on backscatter According to Changed in Components of Linear Accelerator Using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 선형가속기 구성요소 변화에 따른 후방산란에 관한 연구)

  • Kim, Hwein;Chon, Kwonsu
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.239-247
    • /
    • 2015
  • It should be accurate dose calculation to increase the efficiency of radiation therapy, and it is priority to figure out the beam characteristics for this purpose. The target and primary collimator in head components of the linear accelerator have the greatest influence on determining the beam characteristics which is caused by backscatter and it is the factor to consider the shielding structures and equipment management. In this study, we made modeling of the linear accelerator through the Geant4 Monte Carlo simulation and investigated backscatter according to the change of the size and shape in head components. For the scattered electrons, it showed the greatest number of distributions inside of the inner radius at primary collimator. But, for the scattered photons which have the high energy, it was mostly located outside of the inner radius at primary collimator. Scattered positrons showed a small occurrence in about 0.03%. According to the change of the inner radius at primary collimator, it was great changes in the inside of inner radius for all three scattered particles. According to the change of the outer radius at primary collimator, it was shown some considerable effects from more than 60 mm outer radius. It was no significant effect according to the change of target thickness. In this study, we found that backscatter should be considered, and figured out that geometric size and shape of the peripheral components are the factors that influences the backscatter effect.

A Study on the Improvement of Accuracy of Close-Range Photogrammetry Analysis by Using Non-metric Camera (비측량용(非測量用) 사진기(寫眞機)에 의(依)한 근접사진(近接寫眞) 해석(解析)의 정확도(正確度) 향상(向上)에 관(關)한 연구(研究))

  • Kang, Joon Mook;Oh, Won Jin;Han, Seung Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.151-159
    • /
    • 1992
  • In close-range photogrammetry, to employ non-metric camera especially for the purpose of precise measurement, systematic errors must, first of all, be corrected as they have a great influence on accuracies of results. For it, fiducial marks was built in non-metric camera and the factors such as PPS, PPA, EFL, CFL, and radial lens distortion coefficients for each quadrant were calibrated through collimator test. Also, the coefficients of both radial and tangential lens distortion were calibrated from analytical plumb line method and therefore main systematic errors could be effectively corrected. Using the calibrated non-metric camera, close-range photogrammetry could be successfully accomplished and accuracies could be improved sharply.

  • PDF