• Title/Summary/Keyword: Alkyl chain length

Search Result 128, Processing Time 0.025 seconds

Perchlorate Ion-Selective PVC Membrane Electrode Based on the Quaternary Ammonium Salts (제4급 암모늄염을 이용한 과염소산 이온선택성 PVC막 전극)

  • 안형환;김용렬;강현춘;이한섭;이병철;강안수
    • Membrane Journal
    • /
    • v.3 no.3
    • /
    • pp.126-135
    • /
    • 1993
  • Perchlorate ion-selective PVC membrane electrode responsive to $10^{-6}M$ was developed by incorporating the ion-pair complex of perchlorate with the quaternary ammonium salts as a active material. The effect of chemical structure, the content of active material, the kinds of plasticizers, and the membrane thickness on the electrode characteristics such as the linear response range and Nernstian slope of the electrode were studied. With the results, the useful pH range and the selectivity coefficients to various interfering anions were compared and investigated. It was obtained that the effect of the chemical structure of an active material on the electrode characteristics was improved with increasing the alkyl chain length of the quarternary ammonium salts in the ascending order of Aliquat 336P, TOAP, TDAP, and TDDAP. The electrode characteristics was improved with the decrease of the active material content below the optimum membrane composition, and DBP was the best as a plasticizer. The optimum membrane composition was 9.09wt% of TDDAP, 30.3wt% of PVC, and 60.6wt% of ptasticizer(DBP). And the optimum membrane thickness was0.45mm at this composition. Under the above condition, thelinear response ranger was $10^{-1}~1.2 {\times} 10^{-6}M$, and the detection limit was $5.1{\times}10^{-7}M$ with the Nernstian slope of 57mV/decade of activity of perchlorate ion. The electrode potential was stable within the pH range from 4 to 11. The selectivity coefficient was as shown below : $SCN^->I^->NO_3^->Br^->ClO_3^->F^->Cl^->SO_4^{2-}$

  • PDF

Synthesis of Characterization of Poly(alkylene oxide) Copolyols by Catioinc Ring Opening Polymerization and Their Azide Functionalized Copolyols (양이온 개환중합에 의한 폴리알킬렌 옥사이드 코폴리올의 합성과 아지드화 코폴리올의 특성 연구)

  • Lee, Jae-Myung;Seol, Yang-Ho;Kwon, Jung-Ok;Jin, Yong-Hyun;Noh, Si-Tae
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.267-276
    • /
    • 2020
  • Poly(epichlorohydrin) copolyol series (PECH copolyols) were synthesized via cationic ring-opening copolymerization (ROCP) of oxirane-based monomers and effects of reaction temperature, solvent type, and initiator were studied. As a comonomer, two types of alkylene oxides were used, and polymerization conditions were conducted both with diethylene glycol (DEG) as an initiator in methylene chloride (MC) solvent and tripropylene glycol (TPG) in toluene solvent. In order to induce the active monomer (AM) mechanism in the ring-opening copolymerization reaction, the monomer was injected by an incremental monomer addition (IMA) method using a syringe pump, and the polymerization was performed at -5 ℃. PECH copolyol, a synthesized ephichorohydrin (ECH)-based copolyol, was converted to glycidyl azide-based energy-containing copolyol (GAP copolyol) by azadizing the ECH unit through a substitution reaction. It was confirmed that the synthesized azide copolyol had little effects on changes of the solvent and the initiator. Also, the molecular weight increased 500 after the azide reaction, thereby the GAP copolyol was polymerized as designed. As the content of the comonomer increased, both the Tg and viscosity tended to decrease due to the influence of the alkyl chain length. It is possible to fundamentally prevent CH3N3 amount produced in the azide reaction process, and it is expected that a large-scale process could be achievable.

The synergistic solvent extraction effect of europium and yttrium using the hexanoic acid -crown ether system (Hexanoic acid - crown ether system을 이용한 europium과 yttrium의 용매추출효과의 향상)

  • Sim, Dea-Seon;Han, Hye-Rim;Kim, Se-Mi;Kim, Jeong-Hoon;Kim, Young-Wun;Jeong, Noh-Hee;Kang, Ho-Cheol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.31-39
    • /
    • 2015
  • The synergistic solvent extraction of rare earth elements such as europium and yttrium has been investigated by the extractant with crown ether as an additive. Macrocyclic ligand as host-guest compounds form more stable complexes with metal ions which have the similar size of the cavity of crown ether. In our previous study[14] founded that the extraction used fatty acid of the various alkyl chain length. Based on the results of the previous experiment, the synergistic separation effect of two metals investigated that the hexanoic acid had was the worst extraction effect which added a crown ether such as 18-crown-6 ether, 15-crown-5 ether, and 12-crown-4 ether. In this study, the concentrations of hexanoic acid have showed the separation effect, and then the concentrations and kind of crown ether are performed for synergistic extraction at the hexanoic acid concentration of the highest separation effect. As a results, the separation rate is the highest value of 1.72 at 0.05 M hexanoic acid, and 0.002M 15-crown-5 ether is the best value in other concentrations and kind of crown ether, it is about twice of using only hexanoic acid. Moreover, the extraction species of two metals has been founded $MLR_3{\cdot}3RH$ form when added the crown ether.

Oil Absorptive Properties of Polypropylene Knit Fabric Treated with Oleophilic Acrylic Resin (친유성 아크릴 수지로 처리된 폴리프로필렌 편직물의 유흡착 성질)

  • Jeong, Hwa-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.528-535
    • /
    • 2016
  • Two types of oleophilic acrylic prepolymers were prepared by the solution copolymerization of either ethyl acrylate (EA) or lauryl acrylate (LA) with hydroxy ethyl acrylate (HEA). For the formation of oil-absorbent materials, a mixed solution of the prepolymer and hexamethylene diisocyanate (HDI) as a cross-linker in toluene was applied to polypropylene knit velvet fabric through the conventional pad-dry-cure procedure. The gel fraction of the crosslinked resin, EA-HEA-HDI, increased with increasing feed ratio of HEA to total acrylate or HDI concentration. The oil absorbancy and retention ratio of the prepared materials were compared according to the add-on ratio of resin to fabric, and were assessed with n-decane, toluene, soybean oil, lubricant and bunker C oil as test oils. The optimal oil absorbancy of the materials were observed at around 6% of the add-on ratio for all these oils except for soybean oil. On the other hand, the oil retention ratio increased as the add-on ratio increased. Futhermore, heavier and more viscous oil generally showed higher oil retention ratios. In addition, the oil absorbancy of the materials treated with LA-HEA-HDI resin was higher than that treated with EA-HEA-HDI resin, which showed that the acrylic resins are more absorptive with increasing length of their side alkyl chain.

Addition Reaction of Glycidyl Methacrylate with Carbon Dioxide Using Quaternary Ammonium Salts as Catalys (4급 암모늄염 촉매에 의한 Glycidyl Methacrylate와 이산화탄소의 부가반응)

  • Yang, J.G.;Moon, J.Y.;Jung, S.M.;Park, D.W.;Lee, J.K.
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1156-1163
    • /
    • 1996
  • This study is related to the investigation of the characteristics of quaternary ammonium salt catalyst on the addition reaction of carbon dioxide and glycidyl methacrylate(GMA) to form(2-oxo-1,3-dioxolane-4-yl)methacrylate(DOMA). Among the salts tested, the ones with higher alkyl chain length and with more nucleophilic counter anion showed a higher catalytic activity. Mixed catalysts of NaI and 18-crown-6 showed a good yield of DOMA, but when they are used alone, they showed no catalytic activity. The DOMA monomer was obtained in low polar solvents, while poly(DOMA) could be directly synthesized in aprotic dipolar solvents. Kinetic studies carried out by measuring $CO_2$ pressure in a high pressure batch reactor showed that the reaction rate was first order to the concentration of GMA and $CO_2$ respectively. The rate constant(k) was 0.56L/mol hr and Henry's constant(H') of $CO_2$ in diglyme at $80^{\circ}C$ was $6.5{\times}10^{-4}mol/L{\cdot}kPa$.

  • PDF

Structures of OH Emulsion Prepared with Saccharide Surfactants (당류계 계면활성제로 제조된 O/W 에멀젼의 구조)

  • 홍세흠;한창규;조춘구
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.26 no.1
    • /
    • pp.261-274
    • /
    • 2000
  • The o/w emulsions were prepared with saccharide surfactants which were sucrose monostearate(S160), sucrose distearate(S110), and POE(20) methyl glucose stearate(SSE20). And for emulsion the oils used were n-hydocarbon, squalane(SQ), liquid paraffin(LP), octylpalmitate(OP), octylstearate(OS), alkyl benzoate(AB), isostearyl benzoate(ISB). The structures of o/w emulsion droplet were investigated by laser light scattering and the fractal dimensions were calculated from light intensity curves. Increasing of concentration, chain length, and nonpolarity of oils, fractal dimensions of emulsion droplets were found greater. In general fiactal dimensions were varied from 1.7 to 2.8 and its structures were fractal But the fractal dimensions of octadecane( $C_{18}$), 50, and LP emulsified with S110 and S160 were varied from 3.0 to 3.2 and its structures were more dense. The overall fractal dimensions of S110 and S160 were varied from 2.1 to 2.6, that of SSE20 were varied from 1.5 to 2.1. So it was found that the structures of SSE20 system were less compact than that of S110 and S 160 system, because the hindrance effect of polyoxyehtylene group of SSE20 was stronger than that of sucrose of S160. The strucures of emulsion droplets changed according to the nature of emulsifiers and to compositions of oil substances which they contained, and the structures were found similar when the hydophilic moiety of emulsifiers was same.

  • PDF

17O Solid-State NMR Study of the Effect of Organic Ligands on Atomic Structure of Amorphous Silica Gel: Implications for Surface Structure of Silica and Its Dehydration Processes in Earth's Crust (유기 리간드와 비정질 실리카겔의 상호 작용에 대한 17O 고상핵자기공명 분광분석 연구: 실리카 표면 구조 및 지각의 탈수반응에 대한 의의)

  • Kim, Hyun Na;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.271-282
    • /
    • 2012
  • We explore the effect of removal of organic ligand on the atomic configurations around oxygen in hydroxyl groups in amorphous silica gel (synthesized through hydrolysis of $SiCl_4$ in diethyl-ether) using high resolution $^{17}O$ solid state NMR spectroscopy. $^1H$ and $^{29}Si$ MAS NMR spectra for amorphous silica gel showed diverse hydrogen environments including water, hydroxyl groups (e.g., hydrogen bonded silanol, isolated silanol), and organic ligands (e.g., alkyl chain) that may interact with surface hydroxyls in the amorphous silica gel, for instance, forming silica-organic ligand complex (e.g., Si-$O{\cdots}R$). These physically and chemically adsorbed organic ligands were partly removed by ultrasonic cleaning under ethanol and distilled water for 1 hour. Whereas $^{17}O$ MAS NMR spectra with short pulse length ($0.175{\mu}s$) at 9.4 T and 14.1 T for as-synthesized amorphous silica gel showed the unresolved peak for Si-O-Si and Si-OH structures, the $^{17}O$ MAS NMR spectra with long pulse length ($2{\mu}s$) showed the additional peak at ~0 ppm. The peak at ~0 ppm may be due to Si-OH structure with very fast relaxation rate as coupled to liquid water molecules or organic ligands on the surface of amorphous silica gel. The observation of the peak at ~0 ppm in $^{17}O$ MAS NMR spectra for amorphous silica gel became more significant as the organic ligands were removed. These results indicate that the organic ligands on the surface of amorphous silica gel interact with oxygen atoms in Si-OH and provide the information about atomic structure of silanol and siloxane in amorphous silica gel. The current results could enhance the understanding of dehydration mechanism of diverse silicates, which is known as atomic scale origins of intermediate depth (approximately, 70~300 km) earthquakes in subduction zone.

Characteristics of Electrode Potential and AC Impendance of Perchlorate Ion-Selective Electrodes Based on Quaternary Phosphonium Salts in PVC Membranes (제4급 인산염을 이용한 과염소산 이온선택성 PVC막 전극의 전극전위와 AC 임피던스 특성)

  • 안형환
    • Membrane Journal
    • /
    • v.9 no.4
    • /
    • pp.230-239
    • /
    • 1999
  • Perchlorate ion-selective electrodes in PVC membranes that respond linearly to concentration 106 M were developed by incorporating the quaternary phosphonium salts as a canier. The effects of the chemical structure, the contents of canier, the kind of plasticizer and the membrane thickness on electrode characteristics such as the electrode slope, the linear respone range and the detection limit were studied. With this results, the detectable pH range, selectivity coefficients and AC impedance characteristics were compared and investigated. The perchlorate ion substituents of the quaternary phosphonium salts like tetraoctylphosphonium perchlorate (TOPP) , tetraphenylphosphonium perchlorate(TPPP), and tetrabutylphosphonium perchlorate(TBPP) as a canier were used. The electrode characteristics were better in the ascending order of TBPP < TPPP < TOPP, with the increase of carbon chain length of the alkyl group. Dioctylsebacate(OOS) was best as a plasticizer, the canier contents were better with 11.76 wt% and the optimum membrane thickness was 0.19 mm. Under the above condition, the electrode slope was 56.58 mV/$^P{ClO}_4$,the linear response range was $10^{-1}$\times$10^{-6}$ M, the detection limit was 9.66 x $10^{-7}$ M. The performance of electrode was better than Orion electrode. The electrode potential was stable within the pH range from 3 to 11. The order of the selectivity coefficients for the perchlorate ion was sol < F < Br < 1. With the result of impedance spectrum, it was found that the equivalent circuit for the electrode could be expressed by a series combination of solution resistance, parallel circuit consisting of the double layer capacitance and bulk resistance and Warburg impedance. And solution resistance was almost not appeared and Warburg impedance was highly appeared by diffusion. Then Warburg coefficient was 1.32$\times$$10^74 $\Omega$ $\cdot$ ${cm}^2/s^{1/2}$.

  • PDF