• Title/Summary/Keyword: Alkaliphilic microorganism

Search Result 3, Processing Time 0.017 seconds

A Study on Cementation of Sand Using Blast Furnace Slag and Extreme Microorganism (고로슬래그와 극한미생물을 이용한 모래의 고결화 연구)

  • Park, Sung-Sik;Choi, Sun-Gyu;Nam, In-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.93-101
    • /
    • 2014
  • In this study, a blast furnace slag having latent hydraulic property with an alkaline activator for resource recycling was used to solidify sand without using cement. Existing chemical alkaline activators such as $Ca(OH)_2$ and NaOH were used for cementing soils. An alkaliphilic microorganism, which is active at higher than pH 10, is tested for a new alkaline activator. The alkaliphilic microorganism was added into sand with a blast furnace slag and a chemical alkaline activator. This is called the microorganism alkaline activator. Four different ratios of blast furnace slag (4, 8, 12, 16%) and two different chemical alkaline activators ($Ca(OH)_2$ and NaOH) were used for preparing cemented specimens with or without the alkaliphilic microorganism. The specimens were air-cured for 7 days and then tested for the experiment of unconfined compressive strength (UCS). Experimental results showed that as a blast furnace slag increased, the water content and dry density increased. The UCS of a specimen increased from 178 kPa to 2,435 kPa. The UCS of a specimen mixed with $Ca(OH)_2$ was 5-54% greater than that with NaOH. When the microorganism was added into the specimen, the UCS of a specimen with $Ca(OH)_2$ decreased by 11-60% but one with NaOH increased by 19-121%. The C-S-H hydrates were found in the cemented specimens, and their amounts increased as the amount of blast furnace slag increased through SEM analysis.

Field Study for Application of Soil Cementation Method Using Alkaliphilic Microorganism and Low-cost Badge (극한미생물과 저가 배지를 이용한 지반고결제의 현장 적용 연구)

  • Choi, Sun-Gyu;Chae, Kyung-Hyeon;Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.1
    • /
    • pp.37-46
    • /
    • 2015
  • In this study, a blast furnace slag with the alkaliphilic microorganism (Bacillus halodurans) alkaline activator was used to cement natural soils in the field. A low-cost and massive microbial solution for cementation of field soils was produced and compared with existing microbial culture in terms of efficiency. A field soil was prepared for three different cementation areas: a cemented ground with microbial alkaline activator (Microbially-treated soil), a cemented ground with ordinary Portland cement (Cement-treated soil), and untreated ground (Non-treated soil). The testing ground was prepared at a size of 2.6 m in width, 4 m in length, and 0.2 m in depth. After 28 days, a series of unconfined compression tests on the cement-treated and microbially-treated soils were carried out. On the other hand, a torvane test was carried out for non-treated soil. The strength of field soils treated with microorganism was 1/5 times lower than those of cement-treated soil but is 6 times higher than non-treated soil. The pH measured from microbially-treated soil was about 10, which is lower than that of cement-treated soil (pH = 11). Therefore, it is more eco-friendly than Portland cemented soils. The C-S-H hydrates were found in both cement- and microbially-treated soils through SEM-EDS analyses and cement hydrates were also found around soil particles through SEM analysis.

Isolation and Identification of Novel Alkalophilic Bacillus alkalophishaggy JY-827 with Anticaries microbe Streptococcus mutans. (치아 우식 미생물 Streptococcus mutans 에 대해 활균활성을 갖는 신규 호알칼리성 Bacillus alkalophilshaggy JY-827의 분리 및 동정)

  • 전주연;류일환;이상욱;이갑상
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.5
    • /
    • pp.243-250
    • /
    • 2000
  • The study was performed to investigated the excellent microbial anticaries substance which is more effective than the chlorohexidine in the dental caries treatment. For the screening of alkaliphilic microorganism, more than 1200 bacterial strains were isolated from sea soil sample. A typ-ical strain which produced the most excellent antimicrobial substance was selected. The strain was identified novel alkalophilic Bacillus sp. through the results of morphological, biochemical and chemotaxonomical characteristics and 16S rDNA sequencing and designated as Bacillus alkalophilshaggy JY-827.

  • PDF