• Title/Summary/Keyword: Alkaline Water

Search Result 869, Processing Time 0.03 seconds

Development of an After-treatment Agent, Using an Alkaline Hair Treatment (알칼리성 모발처리제를 이용한 후처리제 개발)

  • Kim, Hye-Kyun
    • Journal of Digital Convergence
    • /
    • v.15 no.1
    • /
    • pp.509-517
    • /
    • 2017
  • As the effectiveness of ionic water that mainly used for the purpose of treatment has been widely known with the recent "well-being" trend, people's interest in it is also gradually increasing. Especially, the alkaline ionic water for drinking purpose could conveniently provide different types/amount of inorganics required for different dietary life depending on nature and race, could effectively provide alkaline inorganics that could be insufficient to modern Korean people, and also could provide alkaline inorganics that prevent/cure/relieve pregnant women's morning sickness. Applying the suggested performance/manufacturing method of alkaline ionic water through the performance assessment of alkaline electrolytic ionic water of the developed product, it would be necessary to have additional researches on the improvement of product or parallel development that could be applied to diverse areas.

Comparison of Sewage Sludge Solubilization through Different Pretreatment Methods (전처리 방법에 따른 하수슬러지 가용화 비교연구)

  • Kwon, Jae-Hyun;Kim, Bong-Jun;Kim, Min-Kyu;Yeom, Ick-Tae;Kim, Hyung-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.17 no.4
    • /
    • pp.567-573
    • /
    • 2003
  • The pretreatment process was carried out to solubilize the sewage sludge for enhancing its biodegradability using alkaline treatment, ultrasonic treatment(15kHz), ozone treatment and different combination of these three methods: alkaline followed by ultrasonic as well as ozone, and ultrasonic followed by alkaline. The solubilization efficiency was evaluated based on the SCOD/TCOD ratio and VSS/TS ratio. In results, the proper condition of alkaline treatment was shown as 30meq/l of NaOH, pH 12 and 3hours of reaction time. Solubilization efficiency increased to 17% from initial 2% based on SCOD/TCOD ratio under this condition. In ultrasonic treatment, the higher ultrasonic power, the longer treatment time and the lower sludge volume resulted in higher solubilization respectively. There was a rapid increase in solubilization efficiency after 20 minute, then it was measured as 32% of SCOD/TCOD ratio in 1 hour at a ultrasonic power of 1,300W with 1/sludge. Solubilization efficiencies in combined treatment using alkaline and ultrasonic were 47-53% higher than single treatment at a sonicated time of 1 hour. Ozone treatment followed by alkaline treatment also represented the enhanced solubilization compared to ozone treatment. Therefore, ultrasonic or ozone treatment assisted by alkaline could achieve the short treatment time as well as high solubilizetion efficiency.

Preparation and characterization of PVDF/alkali-treated-PVDF blend membranes

  • Liu, Q.F.;Li, F.Z.;Guo, Y.Q.;Dong, Y.L.;Liu, J.Y.;Shao, H.B.;Fu, Z.M.
    • Membrane and Water Treatment
    • /
    • v.7 no.5
    • /
    • pp.417-431
    • /
    • 2016
  • Poly(vinylidene fluoride) (PVDF) powder was treated with aqueous sodium hydroxide to obtain partially defluorinated fluoropolymers with expected properties such as improving hydrophilicity and fouling resistance. Raman spectrum and FT-IR results confirmed the existence of conjugated carbon double bonds after alkaline treatment. As the concentration increased, the degree of defluorination increased. The morphology and structure of membranes were examined. The permeation performance was investigated. The results showed that membrane's hydrophilicity increased with increase of the percentage of alkaline treated PVDF powder. Moreover, in terms of the water contact angle, it decreased from $92^{\circ}$ to a minimum of $68^{\circ}$; while water up take increased from 128 to 138%. Fluxof pure water and the cleaning efficiency increased with the increase of alkaline treated PVDF powder. The fouling potential also decreased with the increase of the percentage of alkaline treated PVDF powder. The reason that makes blending PVDF show different characteristics because of partial defluorination, which led the formation of conjugated C = C bonds and the inclusion of oxygen functionalities. The polyene structure followed by hydroxide attack to yield hydroxyl and carbonyl groups. Therefore, the hydrophilicity of blending membrane was improved. The SEM and porosity measurements showed that no obvious variations of the pore dimensions and structures for blend membranes were observed. Mechanical tests suggest that the high content of the alkaline treated PVDF result in membranes with less tolerance of tensile stress and higher brittleness. TGA results exhibited that the blend of alkaline treated PVDF did not change membrane thermal stability.

Study on the Durability of GFRP Composites in Alkaline Environment(1) (알칼리 환경에 대한 GFRP 복합재료의 내구성에 관한 연구(1))

  • Moon, Yong-Jae;Park, Chang-Ho;Moon, Chang-Kwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.58-63
    • /
    • 2008
  • The effect of alkaline environmental condition on durability of GFRP composites according to additives was investigated. Additives used were polyvinyl alcohol(PVA), kaolin and alumina powder. Weight gains increased with immersion time in all GFRP composites at $80^{\circ}C$. But weight gain of specimen added PVA did not differ through the wlwle immersion time in both tap water and alkaline solution at 20 and $80^{\circ}C$. Tensile strength decreased with immersion time in all environment conditions. Tensile strength of GFRP composites regardless of additives decreased rapidly up to 5 days of immersion and then decreased slowly up to 30 days in alkaline solution environment at $80^{\circ}C$. Weight gains had not. much difference in both tap water and alkaline solution at $20^{\circ}C$. And weight gain of GFRP composites added polyvinyl alcohol had smaller than the others through the whole immersion time in both tap water and alkaline solution at $20^{\circ}C$ and $80^{\circ}C$. Tensile strength of GFRP composites added polyvinyl alcohol had higher than the others through the whole immersion time in both tap water and alkaline solution at $20^{\circ}C$ and $80^{\circ}C$.

Strength Property of Concrete Mixed Blast Furnace Slag Using Electrolysis Alkaline Aqueous as Mixed Water (전기분해 알칼리수를 배합수로 활용한 고로슬래그 혼입 콘크리트의 강도 특성)

  • Jeong, Su-Mi;Kim, Ju-Sung;Park, Sun-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.135-136
    • /
    • 2023
  • In this study, a concrete was prepared using an alkaline aqueous solution produced by electrolyzing potassium carbonate in order to improve the low initial strength of concrete using blast furnace slag. In order to confirm the increase in initial strength, the compressive strength of specimens was measured on the age of 7, 28 days. As a result, the blast furnace slag concrete using the electrolysis alkaline aqueous solution as the mixed water show high strength more than the blast furnace slag concrete using the general mixed water.

  • PDF

Antimicrobial efficacies of alkaline disinfectant solution and commercial disinfectants against Brucella ovis

  • Yoo, Jong-Hyun
    • Korean Journal of Veterinary Service
    • /
    • v.32 no.4
    • /
    • pp.347-351
    • /
    • 2009
  • Bruella spp. involves a considerable danger of public health and farm animal industry. In this study, we assessed the disinfection efficacy of alkaline disinfectant solution and three commercial farm disinfectants (quaternary ammonium compound, sodium dichloroisocyanurate, potassium monopersulphate/sodium dichloroisocyanurate) against Brucella ovis. A bactericidal efficacy test by broth dilution method was used to determine the lowest effective dilution of selected disinfectants following exposure to test bacteria for 30 minutes at $4^{\circ}C$. Disinfectants and test bacteria are diluted with distilled water (DW), hard water (HW) or organic matter suspension (OM) according to treatment condition. Three commercial disinfectant showed excellent antimicrobial activity (up to dilution of $\times200$ in OM treatment). Alkaline disinfectant solution demonstrated favorable bactericidal efficacy against B. abortus (at dilution of $\times20$ in OM treatment). Three commercial farm disinfectants possess excellent efficacy against B. ovis. Alkaline disinfectant solution has lower potency than commercial farm disinfectant but could help to limit the spread of brucellosis.

Study on the Coating Electrode for the Alkaline Water Electrolysis (알칼리 수전해용 코팅 전극에 관한 연구)

  • MIN-JI KANG;CHEOL-HWI RYU;GAB-JIN HWANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.575-580
    • /
    • 2023
  • An electrode was prepared by dip-coating NiFe2O4 powder on stainless steel (SUS) support for the application in the alkaline water electrolysis. The prepared electrode was analyzed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDXS), and was evaluated for the voltage properties with the change of current density in oxygen evolution reaction (OER) and hydrgen evolution reaction (HER) using 1, 3 and 7 M KOH solution. From the SEM and EDXS analysis, it was confirmed that the prepared electrode had NiFe2O4 on the SUS support. In OER and HER, the voltage in the 7 M KOH solution had a value of 1.35 and -1.90 V at 0.2 and -0.2 A/cm2 of the current density, respectively. It was considered that the prepared electrode could be use as an electrode in the alkaline water electrolysis from the experimental results.

Thermal-flow Analysis of the Cooling System in the Medicated Water Electrolysis Apparatus (냉이온수기 냉각시스템에 관한 열유동 해석)

  • Jeon, Seong-Oh;Lee, Sang-Jun;Lee, Jong-Chul;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.33-38
    • /
    • 2011
  • Medicated water electrolysis apparatus, which electrolyzes water into acidic water and alkaline water, was in the spotlight as becoming known the effect of alkaline water. It is known as good for health as removing active oxygen in the human's body and promoting digestion. But, the customers could not get that desired water temperature because these apparatuses are directly connected with a water pipe. So, the cooling system was developed for controlling the temperature of the alkaline water. One of the typical way is to store water in water tank and control the temperature. But, in this way, storing water can be polluted impurities coming from outside. For protecting this pollution, the cooling system based on indirect heat exchange method through phase change between water and ice was developed. In this study, we have calculated efficiency of the cooling system with phase change by experiment and commercial CFD(Computational Fluid Dynamics) code, ANSYS CFX. To consider the effect of latent heat that is generated by melting ice, we have simulated two phase numerical analyses used enthalpy method and found the temperature, velocity, and ice mass distribution for calculating the efficiency of cooling. From the results of numerical analysis, we have obtained the relationship between the cooling efficiency and each design factor.

Numerical Modeling of Solid Alkaline Fuel Cell (고체 알칼리 연료전지 모델링)

  • Kim, Kyoungyoun;Sohn, Young-Jun;Choi, Young-Woo;Park, Seok-Hee;Kim, Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.98.1-98.1
    • /
    • 2011
  • We present here an isothermal, one-dimensional, steady-state model for a solid alkaline fuel cell (SAFC) with an anion exchange membrane. The conducting ions now move from the cathode to the anode in SAFC. The water is produced at the anode and is also a stoichiometric reactant at the cathode as well as hydrogen and oxygen. In the present model, a net-water-per-proton flux ratio can be predicted and the water transport in the SAFC is explained for various operating conditions.

  • PDF

A Study on Hazard of Renewable Energy based Alkaline Water Exectrolysis Equipment (재생에너지 기반 알칼라인 수전해 장치(2 Nm3/hr) 위험요인 고찰)

  • KIM, HYEONKI;SEO, DOOHYOUN;KIM, TAEHUN;RHIE, KWANGWON;LEE, DONGMIN;SHIN, DANBEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.1
    • /
    • pp.55-60
    • /
    • 2022
  • As interest in sustainable and eco-friendly energy sources is increasing due to various problems in the carbon society, a hydrogen economy using hydrogen as a main energy source is emerging. While the natural gas reforming method generates carbon dioxide, the water electrolysis method based on renewable energy is eco-friendly. The water electrolysis device currently being developed uses a 2 Nm3/hr class alkaline aqueous solution as an electrolyte and produces hydrogen based on renewable energy. In this study, risk assessment was conducted for these water electrolysis devices