• 제목/요약/키워드: Alkali-aggregate reaction

검색결과 110건 처리시간 0.028초

알칼리-골재 반응에 의한 콘크리트 포장 팽창 장기 모니터링 (Long-term Monitoring of Expansion of Cement Concrete Pavement Affected by Alkali-Aggregate Reaction)

  • 홍승호;심영환
    • 한국도로학회논문집
    • /
    • 제17권2호
    • /
    • pp.13-20
    • /
    • 2015
  • PURPOSES: This paper describes the expansion caused by the alkali-aggregate reaction (AAR) in concrete pavement currently in service. It also discusses the effects of joints installed to release the stress induced by the AAR expansion. METHODS: The expansion effect on concrete pavement was verified by a visual inspection and long-term measurement of the joint width of a cut-section. The behaviors of 16 newly installed joints were monitored as part of the investigation and long-term monitoring was carried out for three years after cutting. RESULTS: The behavior of a bridge was affected when AAR occurred in the connected pavement. The newly installed joints shrank in the longitudinal direction of the bridge after cutting. The width of the joints decreased over the six months after cutting. A large portion of the joint width (8.5cm) was found to have closed nine months after cutting. It had ultimately shrunk by about 92 percent when the final measurement was taken. CONCLUSIONS : The expansion of the pavement due to AAR was quantitatively described by visual inspection and the long-term monitoring of the newly cut joints. However, the width of the new joints decreased over the six to nine months after cutting. Additional research should be conducted to determine a means of controlling the expansion due to AAR in the pavement.

용출수를 사용한 플라이애쉬 혼입 모르타르의 강도특성에 관한 연구 (A Study on the Compressive Strength Property of Mortar with Fly Ash Using Water Eluted from Recycled Coarse Aggregates)

  • 신상엽;정의창;김영수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.31-32
    • /
    • 2013
  • ThThe purpose of this study is to investigate the compressive strength properties of fly ash using water eluted from recycled coarse aggregate. When fly ash come into contact with water, they have not a autonomously chemical reaction. But fly ash is a pozzolan reaction when fly ash come into contact with water and calcium hydroxide(Ca(OH)2) in alkaline environment. For that reason, if water eluted from recycled coarse aggregate use mixture water, fly ash is expected to reaction of pozzolan reaction property in early stage. According to the experimentation result, ICP-MS analysis showed water eluted from recycled coarse aggregate has a high alkali-ash value of pH of 12 and over. And mixing ratio 30% fly ash mortar using water eluted from recycled coarse aggregate showed a similar strength of plain mortar due to the pozzolan reaction. Also, poor strength in initial age, disadvantage of mortar using fly ash, can be improved as hydration in early age is expedited due to calcium hydroxide(Ca(OH)2) and unhydrated cement component eluted from recycled aggregate mortar.

  • PDF

Modelling of Alkali-Silica Reaction Effects on Mechanical Property Changes of Concrete

  • Kim, Jung Joong;Fan, Tai;Reda Tah, Mahmoud M.;Lim, Nam-Hyoung
    • International Journal of Railway
    • /
    • 제8권2호
    • /
    • pp.42-45
    • /
    • 2015
  • Alkali-silica reaction (ASR) is a chemical reaction in concrete that alkalis in cement react with reactive silica in aggregate in the presence of water. When ASR takes place, it produces gels that absorb water and expand. Swelling of ASR gels can damage concrete and cause cracking and volume expansion in concrete structure. In this paper, mechanical consequences of ASR on concrete are simulated by a finite element (FE) analysis. An FE model of concrete is built. The evolution of concrete mechanical properties subjected to ASR is achieved by FE analyses. The constitutive model of concrete is attained via the FE analysis. A case study is used to demonstrate the proposed method. The simulated results using the proposed model are in good agreement with the observations of concrete with ASR reported in the literature. The results can be used for a basic research to enhance durability of concrete slab tracks and concrete railway sleepers.

폐유리 골재를 혼입한 모르터의 알칼리 실리카 반응에 관한 연구 (Alkali-Silica Reaction of Mortar Containing Waste Glass Aggregates)

  • 박승범;이봉춘;권혁준
    • 콘크리트학회논문집
    • /
    • 제13권3호
    • /
    • pp.213-220
    • /
    • 2001
  • 콘크리트에 폐유리의 사용은 알칼리 실리카 반응(ASR)의 팽창으로 균열과 강도저하를 일으킬 수 있다. 본 연구에서는 폐유리의 혼입률과 색상(갈색, 녹색) 및 폐유리로 인해 발생되는 ASR팽창을 저감시키기 위해 섬유의 종류(강섬유, 폴리프로필렌섬유)와 섬유혼입률에 따른 ASR팽창과 강도특성을 분석하였다. 연구결과 녹색의 폐유리가 팽창량이 비교적 작기 때문에 갈색의 폐유리보다 더욱 유용하며, ASTNM C 1260의 시험에 있어서 폐유리의 혼입으로 인한 퍼시멈(pessimum)량은 발견되지 않았다. 또한, 폐유리와 함께 섬유의 혼입은 폐유리의 실리카와 시멘트 페이스트의 알칼리 사이의 ASR로 인한 팽창과 강도 저하를 저감시키는데 효과적인 것으로 나타났다. 특히 폐유리 혼입률 20%에 대해서 강섬유를 1.5vol.% 혼입하였을 경우 팽창은 40%까지 감소하였으며 휨강도는 폐유리만을 혼입한 것(8$0^{\circ}C$ $H_2O$ 양생)에 비해 110%의 강도발현을 나타내었다.

고로슬래그 미분말 치환에 따른 알칼리-실리카 반응 팽창 저감효과 (The Effect of Ground Granulated Blast Furnace Slag Replacement on Alkali -Silica Reaction)

  • 김지현;전쌍순;엄장섭;진치섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.431-434
    • /
    • 2005
  • The effect of ground granulated blast furnace slag to prevent detrimental expansion due to alkali-silica reaction was investigated through the ASTM C 1260 method. This method is one of the most commonly used method because results can be obtained within 16 days. Reactive aggregate used is a metamorphic rock. The replacement ratios of portland cement by ground granulated blast furnace slag were 0, 15, 25, 35 and 55 percent, respectively. The results indicate that 35 percent replacement of portland cement by ground granulated blast furnace slag seems to be effective to reduce alkali-silica reaction expansion under this experimental conditions.

  • PDF

붕규산 유리 분말을 혼입한 차폐용 콘크리트의 알칼리 실리카 반응에 의한 팽창 실험 (An Experimental Study on Alkali-Silica Reaction due to Neutron Shielding Concrete Containing Borosilicate Glass Powder)

  • 장보길;김지현;정철우
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 춘계 학술논문 발표대회
    • /
    • pp.160-161
    • /
    • 2015
  • Borosilicate glass can be used for improving neutron shielding of concrete. The well known expansion of borosilicate glass caused by expansion of mortar bar was can cause serious damage to the concrete. In this research, borosilicate glass was powdered to reduce the particle size similar to that of cement, and 20% cement replacement set was reduced expansion rate about 30%. But aggregate replacement set was damaged because of Alkali-Silica Reaction expansion.

  • PDF

Effectiveness of mineral additives in mitigating alkali-silica reaction in mortar

  • Nayir, Safa;Erdogdu, Sakir;Kurbetci, Sirin
    • Computers and Concrete
    • /
    • 제20권6호
    • /
    • pp.705-710
    • /
    • 2017
  • The effectiveness of mineral additives in suppressing alkali-silica reactivity has been studied in this work. Experimentation has been performed in accordance with the procedures prescribed in ASTM C 1567. In the scope of the investigation, a quarry aggregate which was reactive according to ASTM C 1260 was tested. In the experimental program, prismatic mortar specimens measuring $25{\times}25{\times}285mm$ were produced. Ten sets of production, three specimens for each set, were made. Length changes were measured at the end of 3, 7, 14 and 28 days and then expansions in percentage have been calculated. Fly ash, silica fume, and metakaolin have been used as cement replacement in different ratios for the testing of the alkali-silicate reactivity of the aggregate. In the mixes performed, the replacement ratios were 20%, 40%, and 60% for the fly ash, and 5%, 10%, and 15% for the silica fume, and 5%, 10%, and 15% for the metakaolin. Mixes without mineral additives were also produced for comparison. The beneficial effect in suppressing alkali-silica reactivity is highly noticeable as the replacement ratios of the mineral additives increase regardless of the type of the mineral additive used. Being more concise, the optimum concentrations of using silica fume and metakaolin in mortar in suppressing ASR is 10%, respectively, while it is 20% for fly ash.

ASR Effectiveness of High Volume Fly Ash Cementitious Systems Using Modified ASTM C 1260 Test Method

  • Shon, Chang-Seon;Kang, Soo-Geon;Kim, Young-Su
    • KCI Concrete Journal
    • /
    • 제14권2호
    • /
    • pp.76-80
    • /
    • 2002
  • The role of high volume Class F fly ash in reducing expansion due to Alkali-Silica Reaction (ASR) was investigated. A series of modified ASTM C 1260 tests were performed under three different levels of NaOH normality, extending the test period to 28 days, using high- or low alkali cement, and Class F fly ash up to 58 % by mass of cement. A reactive siliceous fine aggregate was used. The test results confirm that HVFA replacement in a cementitious system significantly helps in controlling expansion caused by ASR.

  • PDF

ASTM C 1260 실험방법에 의한 시멘트 알칼리 함량이 ASR 팽창성에 미치는 영향 (Effect of Cement Alkali Content on ASR Expansibility by the Test Method of ASTM C 1260)

  • 전성일;손현장;권수안;윤경구
    • 한국도로학회논문집
    • /
    • 제14권6호
    • /
    • pp.37-43
    • /
    • 2012
  • PURPOSES : This study is to evaluate the feasibility of setting the standard of cement alkali content by using ASTM C 1260(accelerated mortar bar test) METHODS : This study analyzes the ASR(alkali silica reaction) expansion of cement mortar bar based on the changes in the aggregate type(fine, coarse), cement type(ordinary, low alkali), and replacement contents of fly ash. ASR tests were conducted according to ASTM C 1260. RESULTS : In this test results, There is no big difference in the ASR expansion between ordinary cement and low alkali cement. From this test results, it was found that the variation of cement alkali content did not have a effect on ASR expansion because mortar bar was placed in a container with sufficient alkali aqueous solution at high temperature during the test process of ASTM C 1260. CONCLUSIONS : It is evidently clear that the alkali content of cement have a effect on ASR. But ASTM C 1260 is difficult to assess this effect.

콘크리트 장기 안정성을 위한 골재의 선택 (Selection of Suitable Aggregates for Long-term Stability of Concrete)

  • 양동윤;이동영
    • 자원환경지질
    • /
    • 제28권5호
    • /
    • pp.519-525
    • /
    • 1995
  • Recently, there have been several cases of serious accidents on concrete structure resulting from rapid deterioration of concrete strength. On the view point of long term stability of concrete, deterioration of concrete strength is mostly due to chemical reaction between alkali and reactive aggregates (alkali-aggreagte reaction; AAR) in concrete rather than a problem of execution. For long-term stability of concrete, concrete aggregates must be carefully selected. Some of rocks used for concrete aggregates contain deleterious minerals reactive to alkali components in concrete. Most of AAR result from chemical reaction between alkali components and reactive silica minerals in aggregates (so called alkali-silica reaction; ASR). The silica minerals are as follows; quartz with seriously distorted lattice structure, volcanic glass, chalcedony, opal, cristobalite, tridymite, etc. ASR may cause expansion and cracks, further collapse in concrete structure, in a few years. In case of crushed aggregates, only a part of rock mass without reactive minerals must be produced in aggregates mine after thorough examination of the distribution of rocks with reactive minerals. In case of natural aggregates, the total content of reactive minerals must be calculated, if, the content is more than 20%, the rate should be lower by mixing other non-reactive crushed- or natural aggregates. If it is obliged to use concrete aggregates all containing deleterious minerals in a discrete area, they must be used with low alkali cement Even if it is low quality in the chemical properties, aggregates with suitable range in the physical properties can be utilized as the aggregate of other purposes.

  • PDF