• Title/Summary/Keyword: Alkali-activated

Search Result 256, Processing Time 0.023 seconds

Performance of one-part alkali activated recycled ceramic tile/fine soil binders

  • Mawlod, Arass Omer
    • Advances in concrete construction
    • /
    • v.10 no.4
    • /
    • pp.311-317
    • /
    • 2020
  • Performance of Sustainable materials continues through using of recycled waste construction materials to minimize the utilization of the natural resources. The cement industry is a major source of CO2 in the atmosphere which is the main cause of global warming. Replacement of OPC with other sustainable cementitious materials has been the most interesting area of researches. This investigation focuses on the properties of alkali-activated mortar with the different replacement ratios of ceramic tile powder (CTP) by fine soil powder (FSP) (0 to 100)% and different molarities of sodium hydroxide concentrations. The experimental program was conducted by examining the compressive strength, water absorption, and water sorptivity. The results showed that the compressive strength of the specimens at age of (28, 56, and 90 days) increases with an increase in the amount of fine soil powder content and decreases at the age of 120 days. Also, minimum water absorption at the age of 90 days was found in the mixes containing 100% fine soil powder. However, fine soil powder replacement had a negative effect on the sorptivity and water absorption values at the age of 120 days. On the other hand, the 12M sodium hydroxide concentration was considered the optimum concentration compared to other concentrations.

Bond properties of steel and sand-coated GFRP bars in Alkali activated cement concrete

  • Tekle, Biruk Hailu;Cui, Yifei;Khennane, Amar
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.123-131
    • /
    • 2020
  • The bond performance of glass fibre reinforced polymer (GFRP) bars and that of steel bars embedded in Alkali Activated Cement (AAC) concrete are analysed and compared using pull-out specimens. The bond failure modes, the average bond strength and the free end bond stress-slip curves are used for comparison. Tepfers' concrete ring model is used to further analyse the splitting failure in ribbed steel bar and GFRP bar specimens. The angle the bond forces make with the bar axis was calculated and used for comparing bond behaviour of ribbed steel bar and GFRP bars in AAC concrete. The results showed that bond failure mode plays a significant role in the comparison of the average bond stress of the specimens at failure. In case of pull-out failure mode, specimens with ribbed steel bars showed a higher bond strength while specimens with GFRP bars showed a higher bond stress in case of splitting failure mode. Comparison of the bond stress-slip curves of ribbed steel bars and GFRP bars depicted that the constant bond stress region at the peak is much smaller in case of GFRP bars than ribbed steel bars indicating a basic bond mechanism difference in GFRP and ribbed steel bars.

Strength and Efflorescence Characteristics of Alkali-Activated Slag Cement Mortar with Red Mud according to Curing Conditions (양생조건에 따른 레드머드 혼입 알칼리활성화 슬래그 시멘트 모르타르의 강도 및 백화특성)

  • Kang, Suk-Pyo;Hwang, Byoung-Il
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.267-275
    • /
    • 2018
  • This study is to investigate the effect of various temperature and humidity conditions on the strength and efflorescence of alkali activated slag cement(AAS) using the red mud. As a result of examining the strength and efflorescence characteristics of AAS mixed with red mud according to the curing conditions, The compressive strength and flexural strength were the highest at 28 days, but the absorption rate, efflorescence area and soluble $Na^+$ elution were lowest in standard wet curing compared to the air curing, high temperature curing and low temperature curing.

Laboratory investigations on the effects of acid attack on concrete containing portland cement partially replaced with ambient-cured alkali-activated binders

  • Ramagiri, Kruthi K.;Patil, Swaraj;Mundra, Harsh;Kar, Arkamitra
    • Advances in concrete construction
    • /
    • v.10 no.3
    • /
    • pp.221-236
    • /
    • 2020
  • To reduce the CO2 emissions associated with the manufacture of portland cement (PC), an efficient alternative like an alkali-activated binder (AAB) is the requirement of the industry. To promote the use of AAB in construction activities, a practically implementable mix proportion is required. Owing to the several raw ingredients of AAB concrete and their associated uncertainties, partial replacement of PC by AAB may be adopted instead of complete replacement as per industrial requirements. Hence, the present study aims to determine an optimal proportion for partial replacement of PC with AAB and recommend a technique for it based on site conditions. Three modes of partial replacement are followed: combining all the dry ingredients for AAB and PC followed by the addition of the requisite liquids (PAM); combining the PC and the AAB concrete in two horizontal layers (PAH); and two vertical layers (PAV). 28-day old specimens are exposed to 10% v/v solutions of HCl, H2SO4, and HNO3 to evaluate changes in mechanical, physical, and microstructural characteristics through compressive strength, corrosion depth, and microscopy. Based on deterioration in strength and integrity, PAH or PAV can be adopted in absence of acid attack, whereas PAM is recommended in presence of acid attack.

Alkali-activated GGBS and enzyme on the swelling properties of sulfate bearing soil

  • Thomas, Ansu;Tripathia, R.K.;Yadu, L.K.
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • Use of cement in stabilizing the sulfate-bearing clay soils forms ettringite/ thaumasite in the presence of moisture leads to excessive swelling and causes damages to structures built on them. The development and use of non-traditional stabilisers such as alkali activated ground granulated blast-furnace slag (AGGBS) and enzyme for soil stabilisation is recommended because of its lower cost and the non detrimental effects on the environment. The objective of the study is to investigate the effectiveness of AGGBS and enzyme on improving the volume change properties of sulfate bearing soil as compared to ordinary Portland cement (OPC). The soil for present study has been collected from Tilda, Chhattisgarh, India and 5000 ppm of sodium sulfate has been added. Various dosages of the selected stabilizers have been used and the effect on plasticity index, differential swell index and swelling pressure has been evaluated. XRD, SEM and EDX were also done on the untreated and treated soil for identifying the mineralogical and microstructural changes. The tests results show that the AGGBS and enzyme treated soil reduces swelling and plasticity characteristics whereas OPC treated soil shows an increase in swelling behaviour. It is observed that the swell pressure of the OPC-treated sulfate bearing soil became 1.5 times higher than that of the OPC treated non-sulfate soil.

Thermomechanical behavior of alkali-activated slag/fly ash composites with PVA fibers exposed to elevated temperatures

  • Kim, J.S.;Lee, H.K.
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.11-18
    • /
    • 2021
  • The present study fabricated polyvinyl alcohol (PVA) fiber-reinforced alkali-activated slag/fly ash (AASF) composites with varying mixture ratios of slag and fly ash. The thermomechanical behaviors of the AASF composites exposed to 200, 400, 600, or 800℃ were evaluated by means of compressive strength test, visual observation, and fire resistance tests. X-ray diffractometry, mercury intrusion porosimetry, and thermogravimetry tests were performed to analyze the microstructure change of the AASF composites upon exposure to high temperatures. Specimens exhibited a gradual strength loss up to 600℃, while also showing a significant decrease in the strength above 600℃. The fire resistance test revealed the occurrence of an inflection point as indicated by an increase in the internal temperature at around 200℃. In addition, specimens showed the dehydration of C-S-H gel, the presence of åkermanite, gehlenite, and anorthite upon exposure to 800℃, which is associated with the formation of macropore population with pores having diameters of 1-3 ㎛ and 20-40 ㎛. Visual observation indicated that the PVA fibers mitigated the cracking and/or spalling of the specimens upon exposure to 800℃.

Use of waste glass as an aggregate in GGBS based alkali activated mortar

  • Sasui, Sasui;Kim, Gyu Yong;Son, Min Jae;Pyeon, Su Jeong;Suh, Dong Kyun;Nam, Jeong Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.21-22
    • /
    • 2021
  • This study incorporates fine waste glass (GS) as a replacement for natural sand (NS) in ground granulated blast furnace slag (GGBS) based alkali activated mortar (AAm). Tests were conducted on the AAm to determine the mechanical properties, apparent porosity and the durability based on its resistance to Na2SO4 5% and H2SO4 2% concentrated solutions. The study revealed that increasing GS up to 100 wt%, increased strength and decreased porosity. The lower porosity attained with the incorporation of GS, improved the resistance of mortar to Na2SO4 and thus increasing durability. However, the durability of mortar to H2SO4 solution was negatively impacted with the further reduction of porosity observed with increasing GS above 50 wt.% believed to be caused by the stress induced as a result of expansive reaction products created when the mortar reacted with acid.

  • PDF

The Estimation of Optimal Mixing Ratio of CLSM Mixed with Red Mud and Paper Sludge Ash (Red mud와 제지회를 혼합한 CLSM의 적정 혼합비 산정)

  • Roh, Seongoh;Kim, Taeyeon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.4
    • /
    • pp.21-27
    • /
    • 2022
  • Recently, numerous studies are being performed to examine alkali-activated cement which uses industrial by-products, such as GGBS and fly ash, as well as alkali activators. Alkali-activated cement is a type of binder that exerts the same strength as cement without using cement by mixing industrial by-products with alkali activators. Alkali activators, which are used mainly for carbon-reducing technologies and alkali activation, are expensive and difficult to apply in the field due to risks related to strong alkalinity. Therefore, this study intends to explore methods to use red mud as a substitute for an alkali activator. To that end, this study has evaluated engineering properties, such as flow and strength, of CLSM that uses red mud and paper sludge ash as binders and its possibility to cause soil pollution. This study also aims to present the appropriate mixing ratios of red mud and paper sludge ash to produce CLSM.

The Effect on the Alkali-Activator Mixture Ratio of fly Ash Mortar (알칼리 활성화제 혼합비가 플라이애시 모르타르에 미치는 영향)

  • Kang, Hyun-Jin;Kang, Su-Tae;Ko, Kyung-Taek;Ryu, Gum-Sung;Park, Jung-Jun;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.395-396
    • /
    • 2009
  • The purpose of this study is to observe the effect of mixture ratio of alkali-activator on workability and compressive strength of alkali-activated mortar that using 100% fly ash.

  • PDF

Resistance to Freezing and Thawing of Alkali-Activated Slag Concrete (알카리활성 슬래그 콘크리트의 동결융해 저항성)

  • Mun, Jae-Sung;Cho, Ah-Ram;Sim, Jae-Il;Yang, Keun-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.105-106
    • /
    • 2011
  • The present tests examined the resistance to freezing and thawing of alkail-activated (AA) slag concrete having compressive strength between 30~56 MPa. To enhance the compressive strength and resistance to freezing and thawing of AA slag concrete, Na ions were used for an activator. Test results revealed that the resistance to freezing and thawing of AA slag concrete is comparable to that of cement concrete when compressive strength is more than 50 MPa.

  • PDF