• Title/Summary/Keyword: Alkali metal salts

Search Result 27, Processing Time 0.025 seconds

Characteristics of Hemolysin from Bacillus thuringiensis subsp. israelensis (Bacillus thuringiensis subsp. israelensis 균주의 Hemolysin 성질)

  • 황지연;김광현
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.6
    • /
    • pp.425-429
    • /
    • 1987
  • The extra-cellular hemolysin from Bacillus thuringiensis subsp. israelensis was purified in the process of suiting with (NH$_4$)$_2$SO$_4$, Sephadex G-200 gel filtration, and DEAE-cellulose column chromatography. The purified hemolysin had molecular weight of approximately 47,000 dalton on SDS-polyacrylamide gel electrophoresis. The activity of purified hemolysin on human red blood cells was increased by thiol agents, but that was Inhibited by cholesterol, protease treatment, and metal salts such as CuSO$_4$, and FeSO$_4$, respectively.

  • PDF

Formation Constants of 18-Crown-6 Complexes with Substituted Potassium Phenoxides (置換 Potassium phenoxide와 이루는 18-Crown-6 Complex의 形成常數)

  • Soo-Dong Yoh;Soon-Kyoo Kim;In-Sook Han;Jong-Hwan Park
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.53-59
    • /
    • 1988
  • Recently, the formation of the complexes between macrocyclic polyethers and alkali metal salts have been determined by several methods. It has been suggested that the specificity of the complexation be due to the nature of the surrounding solvent molecules. The formation constant values ($K_f$) of $K^+$ are shown to be the largest among the other alkali metal cations because the ionic diameter of $K^+$ is approximately the same with the hole size of 18-crown-6. In this study the formation constants of the 1 : 1 complexes of 18-crown-6 with potassium p-substituted phenoxide are calculated by the conductance measurement in organic solvents. As a result, the $K_f$ value series among organic solvents are given in the order of $CH_3$OH > DMF > DMSO. It seems that the donor number of the solvent is a main factor in the formation of the complex between $K^+$ metal ion and 18-crown-6 molecules. At the same time, the formation constants increase with increasing the electron-withdrawing power of substituents because the phenoxide ion is stabilized by the charge dispersion.

  • PDF

The Study on of Hydrogen Production Performance by Model Biomass-supercritical Water Gasification with Various Catalysts (다양한 촉매들을 통한 모델 바이오매스-초임계수 촉매 가스화에서 수소 생산 성능에 대한 연구)

  • Heo, Dong Hyun;Hwang, Jong Ha;Lee, Roosse;Sohn, Jung Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.1
    • /
    • pp.8-14
    • /
    • 2015
  • In this study, the model biomass was used for hydrogen production by supercritical water gasification (SCWG). Model biomasses were glycerol, glycine, lignin and cellulose. The feed concentration was set to 1 wt%. Experiments were conducted in a reactor at $440^{\circ}C$ and above 26.3 MPa for 30 min. The effects of catalysts such as alkali metal salt ($K_2CO_3$ and $Na_2CO_3$) and transition metal salts ($Ni(NO_3)_2$, $Fe(NO_3)_3$ and $Mn(NO_3)_2$) on the gasification were systematically investigated. No tar or coke was observed in all experiments. The results showed that the gasification efficiency increased with various catalysts. For the cellulose and glycerol, all catalysts were effective for the promoted $H_2$ production compared with no catalyst. The significant decrease of $H_2$ production compared with no catalyst was observed with $Na_2CO_3$ and $Fe(NO_3)_3$ for glycine and lignin. respectively. The highest H2 production, 1.24 mmol was obtained for glycerol-SCWG with $Mn(NO_3)_2$. Conclusively, the addition of $Mn(NO_3)_2$ enhanced all model biomass gasification efficiency and increased the hydrogen production promoting the supercritical water reaction.

Size Tailored Nanoparticles of ZrN Prepared by Single-Step Exothermic Chemical Route

  • Lee, Sang-Ki;Park, Kyung-Tae;Ryu, Hong-Youl;Nersisyan, Hayk H.;Lee, Kap-Ho;Lee, Jong-Hyeon
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.243-248
    • /
    • 2012
  • ZrN nanoparticles were prepared by an exothermic reduction of $ZrCl_4$ with $NaN_3$ in the presence of NaCl flux in a nitrogen atmosphere. Using a solid-state combustion approach, we have demonstrated that the zirconium nitride nanoparticles synthesis process can be completed in only several minutes compared with a few hours for previous synthesis approaches. The chemistry of the combustion process is not complex and is based on a metathesis reaction between $ZrCl_4$ and $NaN_3$. Because of the low melting and boiling points of the raw materials it was possible to synthesize the ZrN phase at low combustion temperatures. It was shown that the combustion temperature and the size of the particles can be readily controlled by tuning the concentration of the NaCl flux. The results show that an increase in the NaCl concentration (from 2 to 13 M) results in a temperature decrease from 1280 to $750^{\circ}C$. ZrN nanoparticles have a high surface area (50-70 $m^2/g$), narrow pore size distribution, and nano-particle size between 10 and 30 nm. The activation energy, which can be extracted from the experimental combustion temperature data, is: E = 20 kcal/mol. The method reported here is self-sustaining, rapid, and can be scaled up for a large scale production of a transition metal nitride nanoparticle system (TiN, TaN, HfN, etc.) with suitable halide salts and alkali metal azide.

Comparison of catalytic activity through gas-solid reaction models in CO2 gasification of lignite with alkali metal salts and iron sulfate (알칼리금속염과 철황산염을 촉매로 한 갈탄의 CO2 가스화반응에서 기체-고체 반응모델을 적용한 촉매활성의 비교)

  • Bungay, Vergel C.;Song, Byungho
    • Journal of Energy Engineering
    • /
    • v.23 no.1
    • /
    • pp.58-66
    • /
    • 2014
  • Catalytic gasification of a low rank coal- Inner Mongolian lignite has been carried out with carbon dioxide. The gasification reactions were performed in a thermogravimetric analyzer at temperatures of $600^{\circ}C$ to $900^{\circ}C$. The kinetic parameters were evaluated using three different gas-solids reaction models and the prediction ability of each model were compared. Among the models evaluated, the modified volumetric model was found to correlate best both the non-catalytic and catalytic gasification reactions. The theoretical models, homogeneous and shrinking-core models, were found to satisfactorily correlate gasification reactions for the non-catalytic and $FeSO_4$-catalyzed reactions. In case of alkali metal catalysts, the catalytic activity was mostly pronounced at a low temperature of $600^{\circ}C$ and observed to decrease by 50% as the temperature was increased to $700^{\circ}C$, and it remained nearly constant at temperature over $800^{\circ}C$. The order of catalytic activity was found to be: $K_2CO_3$ > $Na_2CO_3$ > $K_2SO_4$ > $FeSO_4$.

DSC Analysis on Water State of Salvia Hydrogels

  • Yudianti, Rike;Karina, Myrtha;Sakamoto, Masahiro;Azuma, Jun-Ichi
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.1015-1020
    • /
    • 2009
  • The role of the water structure present in hydrogels from nutlets of three species of salvias, S. miltiorrhiza (SM), S. sclarea (SS) and S. viridis (SV), was analyzed by differential scanning calorimetry (DSC). The sharp endothermic peaks that appeared at $5.9^{\circ}C$ (SM), $2.8^{\circ}C$ DC (SS) and $1.8^{\circ}C$ (SV) in each 1.0% hydrogel of 10.4-15.8% were not affected by addition of 0.1 M urea and alkali-metal salts. The order-disorder portions in the network were slightly affected by the distribution of freezable and non-freezable water in the hydrogel networks. The SV hydrogel was further used to investigate the effects of additives (0.1-8.0 M urea and 0.1-5.0 M NaCl) on its melting behavior. At 0.5-4.0 M urea and 1.0-3.0 M NaCl, two endothermic peaks appeared, corresponding to unbound (high temperature) and bound (low temperature) water in the gel networks, and eventually merged into one endothermic peak at 5.0-8.0 M urea and 4.0-4.5 M NaCl. After this merger, the endothermic peak shifted to 3.7, 4.0 and $5.6^{\circ}C$ at 5.0, 6.0 and 8.0 M urea, respectively. In the case of NaCl, a combination of peaks that occurred at 4.0-4.5 M were accompanied by a shift to lower temperature (-14.4 and $15.3^{\circ}C$) and the endothermic peak finally disappeared at 5.0 M NaCl due to the strong binding of water in the gel networks.

Ion Permeation of PVA/Gelatin Blend Membrane Prepared Under High Electric Field (고전장하에서 제조된 PVA/Gelatin 블렌드막의 이온투과 특성)

  • Huh, Yang-Il;Joe, Jeong-Woong
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.568-571
    • /
    • 2006
  • Poly(vinyl alcohol) (PVA)/gelatin(GEL) blend membranes were prepared under a high electric field, and their swelling and ion permeation behaviors were investigated. For alkali metal salts such as LiCl, NaCl and KCl, the permeability coefficients were increased until the electric field of 10 kV due to the decreased tortuosity, whereas they were decreased over 10 kV owing to the increase of the degree of crystallinity. The swelling ratios of the blend membranes showed the minimum values at pH 6, while the permeability coefficients exhibited the maximum values at the same condition. The minimum swelling ratios result from the repulsion effect between charged groups in acidic or basic regions, and the maximum permeabilities result from Donnan exclusion effect in the same regions. Especially, the per-meability coefficient for KCl of the membrane increased steeply to five times at $40^{\circ}C$ than below $35^{\circ}C$.