• Title/Summary/Keyword: Alkali metal ion catalysis

Search Result 13, Processing Time 0.223 seconds

Metal-Ion Catalysis in Alkaline Ethanolysis of 2-Pyridyl Thionobenzoate: Effects of Modification of Electrophilic Center from C=O to C=S

  • Um, Ik-Hwan;Song, Yoon-Ju;Kim, Min-Young;Lee, Jae-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1525-1529
    • /
    • 2013
  • Pseudo-first-order rate constants ($k_{obsd}$) have been measured spectrophotometrically for the nucleophilic substitution reactions of 2-pyridyl thionobenzoate (5b) with alkali-metal ethoxides (EtOM, $M^+=Li^+$, $Na^+$, $K^+$, and 18-crown-6-ether complexed $K^+$) in anhydrous ethanol at $25.0{\pm}0.1^{\circ}C$. The plots of $k_{obsd}$ vs. $[EtOM]_o$ curve upward regardless of the nature of the $M^+$ ions, while those of $k_{obsd}/[EtO^-]_{eq}$ vs. $[EtO^-]_{eq}$ are linear with a positive intercept. Dissection of $k_{obsd}$ into $k_{EtO^-}$ and $k_{EtOM}$ (i.e., the second-order rate constants for the reactions with the dissociated $EtO^-$ and ion-paired EtOM, respectively) has revealed that the ion-paired EtOM is more reactive than the dissociated $EtO^-$, and $M^+$ ions catalyze the reactions in the order $K^+$ < $Na^+$ < $Li^+$ < 18C6-complexed $K^+$. The plot of log $k_{EtOM}$ vs. $1/r_{Stokes}$ results in an excellent linear correlation, indicating that the reactions are catalyzed by the solvated $M^+$ ions but not by the bare $M^+$ ions. The reactions of 5b with EtOM have been concluded to proceed through a six-membered cyclic TS, in which the solvated $M^+$ ions increase the electrophilicity of the reaction center and the nucleofugality of the leaving group.

Kinetic Study on Nucleophilic Substitution Reaction of 5-Nitro-8-quinolyl Benzoate, Picolinate, Nicotinate and Isonicotinate with Alkali Metal Ethoxide: Effect of Nonleaving Group on Reactivity and Transition State Structure

  • Lee, Jieun;Kim, Min-Young;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1789-1793
    • /
    • 2014
  • Pseudo-first-order rate constants ($k_{obsd}$) have been measured spectrophotometrically for the reactions of 5-nitro-8-quinolyl nicotinate (4) and 5-nitro-8-quinolyl isonicotinate (5) with alkali metal ethoxides (EtOM; M = K, Na and Li) in anhydrous ethanol at $25.0{\pm}0.1^{\circ}C$. The plots of $k_{obsd}$ vs. [EtOM] curve slightly upward for the reactions with EtOK and EtONa but are linear for the reactions with EtOLi and for those with EtOK in the presence of 18-crown-6-ether. Dissection of $k_{obsd}$ into $k_{EtO^-}$ and $k_{EtOM}$ (i.e., the second-order rate constants for the reactions with the dissociated $EtO^-$ and ion-paired EtOM, respectively) has revealed that the reactivity increases in the order $EtO^-{\approx}EtOLi$ < EtOK < EtONa for the reactions of 4 and EtOLi < $EtO^-$ < EtOK < EtONa for the reactions of 5. Comparison of the kinetic results for the reactions of 4 and 5 with those reported previously for the corresponding reactions of 5-nitro-8-quinolyl benzoate (2) and picolinate (3) has revealed that the esters possessing a pyridine ring (i.e., 3-5) are significantly more reactive than the benzoate ester 2 due to the presence of the electronegative N atom (e.g., 2 << 3 < 4 < 5). It has been concluded that $M^+$ ion catalyzes the reactions of 3-5 by increasing the electrophilicity of the reaction center through a five-membered cyclic transition state (TS) for the reaction of 3 and via a four-membered cyclic TS for the reactions of 4 and 5.

Effect of Alkali Metal Ions on Alkaline Ethanolysis of 2-Pyridyl and 4-Pyridyl Benzoates in Anhydrous Ethanol

  • Lee, Jae-In;Kang, Ji-Sun;Kim, Song-I;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2929-2933
    • /
    • 2010
  • Pseudo-first-order rate constants ($k_{obsd}$) have been measured for nucleophilic substitution reactions of 2-pyridyl benzoate 5 with alkali metal ethoxides (EtOM, M = Li, Na, K) in anhydrous ethanol. The plots of $k_{obsd}$ vs. $[EtOM]_o$ are curved upwardly but linear in the excess presence of 18-crown-6-ether (18C6) with significant decreased $k_{obsd}$ values in the reaction with EtOK. The $k_{obsd}$ value for the reaction of 5 with a given EtONa concentration decreases steeply upon addition of 15-crown-5-ether (15C5) to the reaction medium up to ca. [15C5]/$[EtONa]_o$ = 1, and remains nearly constant thereafter, indicating that $M^+$ ions catalyze the reaction in the absence of the complexing agents. Dissection $k_{obsd}$ into $k_{EtO^-}$- and $k_{EtOM}$, i.e., the second-order rate constants for the reaction with the dissociated $EtO^-$ and the ion-paired EtOM, respectively has revealed that ion-paired EtOM is 3.2 - 4.6 times more reactive than dissociated $EtO^-$. It has been concluded that $M^+$ ions increase the electrophilicity of the reaction center through a 6-membered cyclic transition state. This idea has been examined from the corresponding reactions of 4-pyridyl benzoate 6, which cannot form such a 6-membered cyclic transition state.