• Title/Summary/Keyword: Alkali granite

Search Result 114, Processing Time 0.021 seconds

Mineral chemistry and major element geochemistry of the granitic rocks in the Cheongsan area (청산 일대에 분포하는 화강암류의 광물조성과 주성분원소 지구화학)

  • 사공희;좌용주
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.185-209
    • /
    • 1997
  • Granitic rocks in the Cheongsan area cosist of three plutons-Baegrog granodiorite, Cheongsan porphyritic granite, and two mica granite. Amphilboles from the Baegrog granodiorite belong to the calcic amphilbole group and show compositional variations from magnesio-hornblende in the core to actinolitic hornblende in the rim. Biotites from the three granites represent intermediate compositions between phlogopite and annite. Muscovites from the two mica granite are considered to be primary muscovite in terms of the occurrence and mineral chemistry. Each granitic rock reveals systematic variation of major oxide contents with $SiO_2$. Major oxide variation trends of the Baegrog granodiorite are fairly different from those of Cheongsan porphyritic granite and two mica granite. The latter two granitic rocks are also different with each other in variation trends for some oxides. Thus three granitic rocks in the Cheongsan area were solidifield from the independent magmas of chemically different, heterogeneous origin. The granitic rocks in the area show calc-alkaline nature. The whole rock geochemistry shows that the Baegrog granodiorite and Cheongsan porphyritic granite belong to metaluminous, I-type granite, whereas the two mica granite to peraluminous, I/S-type granite. The opaque mineral contents and magnetic susceptibility represent that the granitic rocks in the area are ilmenite-series granite, indicating that each magma was solidified under relatively reducing environment. The tectonic environment of the granitic activity in the area seems to have been active continental margin. Alkali feldspar megacryst in the Cheongsan porphyritic granite is considered to be magmatic, judging from the crystal size, shape, arrangement, and distribution pattern of inclusions. The petro-graphical characteristics of the Cheongsan porphyritic granite can be explained by two stage crystallization. Under the smaller degree of undercooling the alkali feldspar megacrysts rapidly grew owing to slow rate of nucleation and fast growth rate. At the larger degree of undercooling the nucleation rate and density drastically increased and the small crystals of the matrix were formed.

  • PDF

Geochemistry of Orthogneisses in the Seungju-Suncheon Area, Korea (승주-순천 지역에 분포하는 정편마암류의 지구화학적 특성)

  • Ahn, Kun-Sang;Oh, Chang-Whan;Park, Bae-Young
    • Journal of the Korean earth science society
    • /
    • v.22 no.3
    • /
    • pp.163-178
    • /
    • 2001
  • Granite gneiss, pophyroblastic gneiss and leucocratic gneiss are widely distributed in the Seungju-Suncheon area, the southwestern part of the Sobacksan Massif, Korea. These orthogneisses show intrusive relationships in outcrops of the study area. This study focuses on the geochemical properties and the tectonic environments for the original rocks of these orthogneisses. The pophyroblastic gneiss is plotted in diorite and granodiorite domain, and granite gneiss and leucocratic gneiss are plotted in both of granodiorite and granite domains on lUGS silica-alkali diagram. Geochemical properies of major elements suggest that these rocks are sub-alkali rock series, and were formed from S-type magma which generated in syn-collision tectonic environment. Discrimination diagrams using HFS elements suggest that original rocks of the three orthogneisses were granitoid of calc-alkali rock series, and were formed in syn-collision environment.

  • PDF

A Geochemical Study on the Behaviors of Major and Trace Elements in the Ulsan Granite and Its Contact Serpentinite (울산화강암 및 인접 사문암 중 주/미량 원소의 거동에 관한 지화학적 연구)

  • Lee, Jae Yeong;Lee, In Ho
    • Economic and Environmental Geology
    • /
    • v.28 no.1
    • /
    • pp.53-67
    • /
    • 1995
  • Geochemical characteristics of iron-related Ulsan granite was studied in comparison with the Cretaceous granitoids from the metallogenic provinces of copper, lead-zinc and lead-zinc/molybdenum in the Gyeongsang Basin, and the variation of cheminal compositions at the Ulsan granite/serpentinite contact was investigated. Ulsan granite is plotted in the regions of granite and granodiorite of Streckeisen's diagram. It shows differentiation trend of calc-alkali magma, and the magmatic evolution from granodiorite to granite is consistant with the general crystallization path of the Cretaceous the granitoids in Gyeongsang Basin. Differentiation index(D.I.) of Ulsan granite is 86~95, which is higher than those of Jindong granites (D.I.=45~70) and Onjongri granites (D.I.=67~84), and there are differences in the content of some major and trace elements between Ulsan granite and other Cretaceous granitoids. At the Ulsan granite/serpentinite contact $SiO_2$, $K_2O$, $Na_2O$, $Al_2O_3$, Rb, Sr, Ba which are abundant in Ulsan granite decrease toward serpentinite, while T.Fe, MgO, Ni, Cr which are abundant in serpentinite decrease toward Ulsan granite. Therefore, the geochemical characteristics of Ulsan granite is applicable to distinguish iron province from different metallogenic provinces where other Cretaceous granitoids occur in the Gyeongsang Basin, and it is possible to find serpentinite which was intruded by granite on the basis of chemical variations.

  • PDF

Geochemistry and Petrogenesis of the Granitic Rocks in the Vicinity of the Mt. Sorak (설악산 부근의 화강암류에 대한 지구화학 및 성인)

  • Kyoung-Won Min;Sung-Bum Kim
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.35-51
    • /
    • 1996
  • The granitic rocks in the vicinity of the Mt. Sorak, the northeastern part of the NE-SW elongated Mesozoic granitic batholith in the Kyeonggi massif, consist of granodiorite, biotite granite, two-mica granite and alkali feldspar granite. Variations In major and most trace elemental abundances show a typical differentiation trend in a granitic magma. Granitic rocks all display a calc-alkaline trend in the AFM diagram. Also, In the ACF diagram discriminating between I- and S-type granitic rocks, granodiorite and most biotite granite in the southeastern area represent I-type and magnetite-series characteristics, while most biotire granite and two-mica granite in the northwestern area exhibit S-type and ilmenite-series ones.According to recent studies of the granitle rocks In the Inje-Hongcheon district. all ihe granitic rocks distributed in the northeastern part of the Kyeonggi massif have been classified as late Triassic to early Jurassic Daebo granite. With reference of the formerly published ages, an age oi $125.6{\pm}4.4$ Ma calculated by the slope in the plot of $^{87}Rb/^{86}Sr-^{87}Sr/^{86}Sr$ for the biotite granite samples from the southeastern area is inferred as an emplacement age for the granitic rocks in the vicinity of the Mt. Sorak. On the basis of elemental variations and Sr isotope compositions, an possible evolutional process for the granitic magmas in this area is suggested. The primary magma of I-type and magnetite-series generated about 125 Ma by partial melting of igneous originated crustal materials, might be emplaced and evolved through fractional crystallization, convection and assimilation of the surrounding Precambrian metasediments to become S-type and ilmenlte-serles in the outer area, and then solidified to granodiorite, biotite granite and two-mica granite.At the latest stage, the evolved hydrothermal solution altered the formerly solidified biotite granite to alkali feldspar granite and probably later local igneous activities affected the alkali feldspar granite again.

  • PDF

A Study on Mineralization of Anyang Feldspar Ore Deposit (안양장석광상의 광화작용에 관한 연구)

  • Park, Boo Seong;Chi, Jeong Mahn
    • Economic and Environmental Geology
    • /
    • v.27 no.1
    • /
    • pp.11-28
    • /
    • 1994
  • The Anyang Feldspar Mine is located in Seoksu Dong, Anyang City, Kyeonggi Do, Korea and has a long exploitation record that is once produced high grade sodium feldspars, for glaze. Geologically, This area is mainly composed of Mesozoic Jurassic biotite granite (Anyang granite) which intruded Precambrian Kyeonggi Gneiss Complex outcroped near the mining area. The deposit is localized on the southwest hill side of Anyang granite batholith and is confined in hydrothemal alteration zone formed by sodium-rich alkali hydrothermal fluids along the fractures of leucocratic granite showing later differentiation facies in the biotite granite. The hydrothermal alteration is characterized by albitization, sericitization, and desilication. The microscopic observation and EPMA, XRD analysis of the feldspar ores show that major minerals are albite and quartz and accessory minerals are orthoclase and sericite, and they are rarely associated with perthite, fluorite, zircon, kaolinite, molybdenite, microcline and iron-oxide. In the REE pattern, the strong negative Eu anomalies of the feldspar ores indicate the influence of feldspar fractionation and show similiar pattern of the host leucocratic granite. The filling temperature of quartz crystals in ore zone ranges from $276^{\circ}C$ to $342^{\circ}C$, and it is inferred that the alteration occurred by the hypothermal solution.

  • PDF

Evaluation of Alkali-Silica Reactivity for Aggregates in Korea according to Test Methods (시험방법에 따른 국내 골재의 알칼리-실리카 반응성 평가)

  • Yun, Kyong-Ku;Kim, Seong-Kwon;Hong, Seung-Ho;Han, Seung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.689-696
    • /
    • 2008
  • The purpose of this study was to evaluate the alkali-silica reactivity for aggregates in Korea according to test methods: accelerated mortar bar test (AMBT) by ASTM C 1260; chemical test by KS F 2545 (ASTM C 289). The results are as follows: The AMBT (ASTM C 1260) results showed that two (2) igneous rocks (two mica granite and felsite), three (3) sedimentary rocks (arkose, red sandstone and shale), two (2) metamorphic rock (slate and vitric tuff), one (1) mineral (quartz) showed more expansion than 0.1% at 14 days. But, some sedimentary rocks and metamorphic rocks expanded more than 0.1% at 28 days even though they were less than 0.1% at 14 days. Therefore, it is necessary to extend the experimental dates more than 14 days to evaluate the possibility of alkali-aggregate reactivity. The chemical test (KS F 2545) results showed that five (5) igneous rocks (andesite, diabase, granite porphyry, muscovite granite and diorite) were indicative of potentially deleterious expansion, while two (2) igneous rocks (diorite porphyry and quartz porphyry) were possible indicative of expansion, and three (3) igneous rocks (biotite granite, two mica granite and felsite) were indicative of innocuous reactivity. The above results showed that the results from chemical method (KS F 2545) and AMBT (ASTM C 1260) had little relationship.

Characteristics of the rocks and its weathering phenomena of the Gameunsa 3-story and Naweonri 5-story Pagodas located at the Kyeongju city, Korea (감은사지 3층 석탑(동탑)과 나원리 5층 석탑의 암석과 풍화현상의 특징에 대한 연구)

  • Lee, Sang Hun
    • Journal of Conservation Science
    • /
    • v.5 no.1 s.5
    • /
    • pp.20-40
    • /
    • 1996
  • For obtaining the basic data for establishing plan on the conservation of the Gameunsa 3-story and Naweonri 5-story Pagodas located at the Kyeongju city, the characteristics of the rock and weathering phenomena have been investigated. The former consists of quartz-rlch granite containing small amount of biotite, and the latter of alkali granite with abundant perthite, These rock phases are nearly identical to the marginal phase of medium-grained hornblende-biotite granodiorite and alkali granite respectively, which are distributed around the Kyeongju city. The rock weathering may be governed mainly by chemical weathering of feldspar following physical segregation of quartz grains and pervasive moss. The feldspar easily dissolve In the solution with pH<7 to precipitate clay mineral such as a kaolinite as a secondary phase on the feldspar surface. However, the chemical weathering of feldspar may continue when the surface is washed by the rain according to removal of the reprecipitated phase. On forwarding, the weathering may be greatly Influenced by the acid rain. Exfoliation and weathering along igneous lineation resulting in exfoliating along the structural line are the characteristic weathering phenomena. Also the secondary small cracks are irregularly developed on the rocks due to different strain on places by the overall structural unbalance of the pagodas. Along these cracks, the rain water intrudes deeply into the rocks and weathering occurs intensively compared to other parts. Weathering may be artificially promoted by the grinding or sculpturing when the pagodas were made. Because it may influence on the physical properties of the rocks as well as destruct the surface of the feldspar crystals, the major constituents of the rocks, it results in providing the environment of easy chemical weathering along time. For conservation, the pagodas must be structurally balanced by compacting the soil basement and supplementing rocks on the destroyed part. On the exfoliated part it is better not to be artifically treated as using cementing material. But the cracks may be filled up by cementing material to avoid the intrusion of acidic water. To supplement the rocks on the destroyed part, it may be better to use similar rock phases from identical biotite granite and alkali granite masses around the Kyeongju city.

  • PDF

Relationships between Texture and Physical Properties of Jurassic Unagsan and Cretaceous Sogrisan Granites (쥬라기 운악산 및 백악기 속리산 화강암류의 조직과 물성과의 관계)

  • Yun Hyun-Soo;Park Deok-Won;Hong Sei-Sun;Kim Ju-Yong;Yang Dong-Yoon;Chang Soobum
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.169-184
    • /
    • 2005
  • Unagsan and Sogrisan granites are widely distributed in the northern Gyeonggi massif and middle Ogcheon belt, respectively, and they show different petrologic characteristics as follows. The former has compact textures and light grey colors, and the latter has spotted miarolitic textures and pink colors. Most of the samples selected for tests are fresh and coarse-grained. And bored core samples were prepared so that they are vertical to the rift plane. The results of modal analysis show that Unagsan granite has significantly higher quartz and plagioclase contents (Qz+Pl) than Sogrisan granite. In contrast, alkali feldspar content (Af) of Sogrisan granite is much higher than that of Unagsan granite. Therefore, it is believed that the light grey colors of Unagsan granite are due to relatively high Qz+Pl, and the pink colors of Sogrisan granite are caused by higher Af. Fractures in Sogrisan granite have strongly perpendicular strike patterns and more dip values close to vertical compared with the fractures in Unagsan granite. Results of the fracture pattern analysis suggest that the Sogrisan granite has better potential to produce dimension stones than the Unagsan granite. However, miarolitic textures often found in the Sogrisan granite may be one of the factors reducing the granite quality. The Unagsan and Sogrisan granites have similar specific gravity values of 2.60 and 2.57, respectively. Absorption ratios and porosity values of Sogrisan granite are higher than those of Unagsan granite, and they shows linearly positive correlations. Compressive and tensile strengths of the Unagsan granite are generally higher than those of Sogrisan granite. These differences and variation trends found in physical properties of Unagsan and Sogrisan granite can be explained by the differences in the textures of Unagsan and Sogrisan granites, namely compact and miarolitic textures respectively. For Unagsan granite, compressive and tensile strengths are negatively correlated with porosity but for Sogrisan granite no specific correlations are found. This is probably due to the irregular dispersion patterns of miarolitic textures formed during the later stages of magmatic processes. Contrary to the trends found in absorption ratios, both granites have similar values of abrasive hardness, which can be explained by higher Qz+Af of the Sogrisan granite than those of the Unagsan granite and that quartz and alkali feldspar have relatively larger hardness values. For Sogrisan granite, compressive strength shows slightly positive correlations with Qz+Af+Pl and negative correlations with biotite and accessory mineral contents (Bt+Ac).

Petrochemical Study on the Micrographic Granite in the Wando Area (완도지역(莞島地域)에 분포하는 미문상화강암(微文象花崗岩)에 대한 암석화학적(岩石化學的) 연구(硏究))

  • Shin, In-Hyun;Nam, Ki-Sang;Kim, Hee-Nam;Park, Young-Seog;Ahn, Kun-Sang
    • Economic and Environmental Geology
    • /
    • v.27 no.2
    • /
    • pp.181-190
    • /
    • 1994
  • Petrochemical study on the micrographic granite distributed in the Wando area, the southernmost part of the Yeongdong-Kwangju depression is performed to investigate the petrogenesis and differentiation processes of the granitic magma. Polarized light microscopy for modal analyses, electron probe microanalyses of feldspars and biotite, inductively coupled plasma analyses for major and trace element contents were adopted in the study. The lithology of the study area consists of Precambrian metasediments, Mesozoic volcanic and sedimentary rocks, and micrographic granite which intrude into the former. The micrographic granite in the Wando area are distributed in the shape of a cauldron. Modal and nonnative mineral analyses of the micrographic granite fall in the area of granite and granodiorite. The chemical composition indicates that the micrographic granite is I-type and magnetite series. The micrographic granite is characterized by more than 90% of micrographic texture in volume percent. Feldspars in the micrographic granite is alkali feldspars (Or, 45~93) and plagioclases (albite to oligoclase). The biotite has a intermediate composition between phlogopite and annite solid solution. The results of the petrochemical studies indicate that the granitic magma of calc-alkaline source materials reactivated in a compressional environment at the continental margin, and then was differentiated by fractional crystallization. The micrographic granite intruded into a shallow level of the crust (5~7 km) in the late Cretaceous.

  • PDF

Petrochemical Study on the Cretaceous Granitic Rocks in the Southern Area of Hambaeg Basin (함백분지(咸白盆地) 남부지역(南部地域)에 분포(分布)하는 백악기(白堊紀) 화강암질암류(花崗岩質岩流)의 암석화학적(岩石化學的) 연구(硏究))

  • Yun, Hyun Soo
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.175-191
    • /
    • 1986
  • The Geodo granodiorite intruded into the Joseon Supergroup is fine-grained at the marginal part, and medium-grained and more leucocratic at the central part. The Quartz monzonite porphyry intruded inte Precambrian granite and Geodo granodiorite has abundant plagioclase phenocryst. The Imog granite intruded into the Yulri Group and the Joseon Supergroup is mediumgrained biotite granite with partly pinkish feldspar phenocryst. The K/Ar ages obtained from the biotite of the Geodo granodiorite and Imog granite are Early ($111{\pm}1{\sim}107{\pm}1$ Ma) and Late ($93{\pm}1{\sim}92{\pm}1$ Ma) Cretaceous, respectively. The K/Ar sericite age of the quartz-sericite zone of the lower Jangsan quartzite occuring in the western area gave much younger age (about 170 Ma) than that of the Jangsan quartzite, that might be reset due to the regional metamorphism of the Daebo orogeny. The granitic rocks of the area are felsic to mafic, metaluminous to peraluminous, calc-alkalic (alkali-lime index${\fallingdotseq}$ 57) and I-type (magnetite-series) based on the chemical data_ And they appear to have been fractionated at the order of Geodo granodiorite, Quartz monzonite porphyry and Imog granite. In terms of mineralogy, geochemistry and K/Ar biotite age, a rock suite of monzodiorite, quartz monzodiorite and quartz monzonite-granodiorite in the Geodo stock was fractionally differentiated from a magmatic body from its margin to inward.

  • PDF