• Title/Summary/Keyword: Alkali and Acid Treatments

Search Result 43, Processing Time 0.019 seconds

Extraction of Liberated Reducing Sugars from Rapeseed Cake via Acid and Alkali Treatments (산 및 알칼리 처리에 의한 유채박의 유리당 추출)

  • Jeong, Han-Seob;Kim, Ho-Yong;Ahn, Sye-Hee;Oh, Sei-Chang;Yang, In;Choi, In-Gyu
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.11
    • /
    • pp.1575-1581
    • /
    • 2011
  • Rapeseed cake, which is the organic waste remaining after rapeseed oil production, is readily available and considered an ecologically-friendly resource with very low cost and high dietary fiber content. This research was carried out for two reasons. First, it was done to analyze the liberated reducing sugar content of rapeseed cake. Second, it was done to investigate the effects on the sugar yield of the various concentrations of acidic and alkaline catalysts used for the hydrolysis of rapeseed cake and the concentrations of rapeseed cake in each catalyst. Several amounts of ground rapeseed cake, 0.5 g, 1 g, and 2 g, were put into 100 mL of catalysts such as sulfuric acid (0.5~2%), hydrochloric acid (0.5~2%), and sodium hydroxide (0.5~2%). Then they were hydrolyzed for 5 min at 121$^{\circ}C$. After hydrolysis, HPLC equipped with an RI detector was used to analyze liberated reducing sugars such as sucrose, glucose, galactose, fructose, and arabinose separated from rapeseed cake. The degradation rate of rapeseed cake was the highest in hydrochloric acid. As the catalyst concentrations used for hydrolysis of rapeseed cake increased, the degradation rate of rapeseed cake also significantly increased. Total reducing sugar content was the highest in hydrochloric acid, and it increased with the increase of catalyst concentrations. However, as the amount of rapeseed cake increased, the total reducing sugar content decreased, exceptionally sucrose in the case of sodium hydroxide.

The Physicochemical Characteristics of Marinated Beef Galbi under Different Cooking Conditions (양념 소갈비의 조리과정에서의 물리화학적 특성 평가)

  • Hong, Sang-Pil;Kim, Young-Ho;Lee, Nam-Hyouck;Heo, Yeong-Uk
    • Journal of the Korean Society of Food Culture
    • /
    • v.28 no.1
    • /
    • pp.78-88
    • /
    • 2013
  • Marinated beef galbi is a traditional Korean dish cooked with soy sauce, pear juice, onion, sesame oil, and sugar. However, there are many differences in beef galbi, including flavor and physicochemical aspects, depending on cooking conditions. Therefore, the physicochemical characteristics of marinated beef galbi prepared through various recipes was evaluated for its effects on pH, texture, aging, proteolysis, heating conditions, cooking time, and flavor compounds (pyrazines, IMPs, or FAAs). There were significant differences in salt concentration (0.8~3.03%), pH (4.89~6.22), and solid soluble contents (1.34-6.31 Brix) between recipes in this study. In the Pearson assay for sensory evaluation, overall preference correlated well with texture (a well-known sensory attribute in meat evaluation). Controlling the pH of meat through soaking in lemon solution, alkali water, phosphate, and baking powder solution, improved water holding capacity as much as 9 to 15% compared with the control. The myofibril index (MFI) of marinated meat stored at $4^{\circ}C$ increased 32% with 24 hours of aging and reached 39% at 48 hours of aging, and its fragmentation was observed through microscopy. SDS-PAGE showed hydrolysis of acid-soluble collagen by the pear juice, possibly related to meat tenderness. On the basis of surface temperature, the cooking time was estimated to be 8 minutes with pan heating at $170^{\circ}C$, 6 minutes at $270{\sim}300^{\circ}C$, and 4 minutes with charcoal at $700{\sim}900^{\circ}C$. Different pyrazine compounds, such as 2-methyl-3-phenylpyrrol(2,3-b) pyrazine (the typical product of the browning reaction) was mainly detected, and IMP (one of the main taste compounds in beef) was in higher amounts with the charcoal treatment, potentially related to its flavor preference among treatments. Our results demonstrate an effective case study and cooking system for beef galbi.

Ecophysiological Characteristics of Chenopodiaceous Plants - An Approach through Inorganic and Organic Solutes - (명아주과 식물의 생리생태학적 특성 - 무기 및 유기용질을 통한 접근 -)

  • Choo, Yeon-Sik;Song, Seung-Dal
    • The Korean Journal of Ecology
    • /
    • v.23 no.5
    • /
    • pp.397-406
    • /
    • 2000
  • In order to clarify the ecophysiological characteristics of Chenopodiaceae which widely distribute on saline and arid habitats, we collected 10 chenopodiaceous plant species, examined their inorganic and organic solute patterns, and confirmed several common physiological characteristics. In spite of high soil Ca/sup 2+/ contents, chenopodiaceous plants had a little water-soluble Ca within cells, but contained high contents of acid-soluble Ca particularly as a result of Ca-oxalate formation. These plant species also showed accumulation of inorganic ions such as K/sup +/, NO₃/sup -/ and Cl/sup -/, and Na/sup +/especially in saline habitats instead of K/sup +/ Meanwhile, with respect to nitrogen metabolism they retained high N contents in leaves, but showed very low amino acid contents. Additionally, they contained very little proline known to act as a cytoplasmic osmolyte. To ascertain whether this physiological characteristics in the field also can be found under controlled conditions, 7 chenopodiaceous plants (Atriplex gmelini, Corispermum stauntonii, Salicornia herbacea, Suaeda aspayagoides, Suaeda japonica, Chenopodium album var. centrorubrum, C. serotinum) were selected and cultivated under salt treatments. As well as field-grown plants, selected plant species showed similar solute pattern in growth experiment. In summary, the family of Chenopodiaceae represents the following physiological properties; high storage capacity for inorganic ions (especially alkali cations, nitrate and chloride), oxalate synthesis to maintain lower soluble Ca contents within cytoplasm, and low contents of amino acids. In addition to some characteristics mentioned above, the physiological plasticities of Chenopodiaceae which can properly regulate their ion and solute pattern according to soil conditions may enable its representative to grow in dry sand dune and salt marsh habitats.

  • PDF