• Title/Summary/Keyword: Aliphatic alkenals

Search Result 1, Processing Time 0.016 seconds

Antifungal Activity of Medium-Chain ($C_{6}-C_{13}$) Alkenals against, and Their Inhibitory Effect on the Plasma Membrane $H^{+}$-ATPase of Saccharomyces cerevisiae

  • Lee, Jae-Ran;Lee, Sang-Hwa;Kubo, Isao;Hong, Soon-Duck
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.3
    • /
    • pp.197-202
    • /
    • 1998
  • Aliphatic alkenals having 6 to 13 carbons were evaluated for antifungal activity against Saccharomyces cerevisiae. The activity was gradually increased with chain length, e.g., (E)-2-decenal and (E)-2-undecenal exhibited maximum potency, while (E)-2-dodecenal and (E)-2-tridecenal were completely inactive. Alkenals showed increasing inhibitory activity with chain length, as in the case of antifungal activity, towards glucose-induced medium acidification by the plasma membrane $H^+$-ATPase of S. cerevisiae. The group including (E)-2-nonenal, (E)-2-decenal, and (E)-2-undecenal exhibited maximum potency, but the potency of (E)-2-dodecenal and (E)-2-tridecenal demonstrated a sudden drop with respect to the former group. (E)-2-Nonenal revealed dose-responsive inhibition to the medium acidification and inhibited over 90% at a concentration of 1.25 mM ($175.3{\mu}g$/ml). In contrast to (E)-2-undecenal whose inhibitory efficiency increased with incubation time, inhibition by (E)-2-dodecenal was reversed with time. Of the tested alkenals, (E)-2-heptenal and (E)-2-octenal most highly inhibited ATP hydrolytic activity by the plasma membrane $H^+$ ATPase, while (E)-2-heptenal at 10 mM ($1121.8{\mu}g$/ml) showed an inhibitory efficacy of 93.2%.

  • PDF