• Title/Summary/Keyword: Alignment method

Search Result 1,265, Processing Time 0.035 seconds

Measurement Time-Delay Error Compensation For Transfer Alignment

  • Lim, You-Chol;Song, Ki-Won;Joon Lyou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.486-486
    • /
    • 2000
  • This paper is concerned with a transfer alignment method for the SDINS(StrapDown Inertial Navigation System) under ship motions. Major error sources of transfer alignment are data transfer time-delay, lever-arm velocity and ship body flexure. Specifically, to reduce alignment errors induced by measurement time-delay effects, the error compensation method through delay state augmentation is suggested. A linearized error model for the velocity and attitude matching transfer alignment system is first derived by linearizing the nonlinear measurement equation with respect to its time delay and augmenting the delay state into the conventional linear state equations. And then it is shown via observability analysis and computer simulations that the delay state can be estimated and compensated during ship motions resulting in considerably less alignment errors.

  • PDF

Ship Flexure Error Compensation of Transfer Alignment via Robust State Estimation (강인한 상태추정에 의한 전달정렬의 선체유연성오차 보상)

  • Lim, You-Chol;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.178-184
    • /
    • 2002
  • This paper deals with the transfer alignment problem of SDINS(StrapDown Inertial Navigation System) subjected to roll and pitch motions of the ship. In order to reduce alignment errors induced by ship body flexure, a linearized error model for the velocity and attitude matching transfer alignment system is first derived by linearizing the nonlinear measurement equation with respect to the dominant y axis component and defining the flexure state of random constant type. And then a robust state estimation scheme is introduced to account for modeling uncertainty of the flexure. By interpreting the simulation results and comparing with the velocity and DCM(Direction Cosine Matrix) partial matching method, it is shown that the proposed method is effective enough to improve the azimuth alignment performance.

Modeling Alignment Experiment Errors for Improved Computer-Aided Alignment

  • Kim, Yunjong;Yang, Ho-Soon;Song, Jae-Bong;Kim, Sug-Whan;Lee, Yun-Woo
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.525-532
    • /
    • 2013
  • Contrary to the academic interests of other existing studies elsewhere, this study deals with how the alignment algorithms such as sensitivity or Differential Wavefront Sampling (DWS) can be better used under effects from field, compensator positioning and environmental errors unavoidable from the shop-floor alignment work. First, the influences of aforementioned errors to the alignment state estimation was investigated with the algorithms. The environmental error was then found to be the dominant factor influencing the alignment state prediction accuracy. Having understood such relationship between the distorted system wavefront caused by the error sources and the alignment state prediction, we used it for simulated and experimental alignment runs for Infrared Optical System (IROS). The difference between trial alignment runs and experiment was quite close, independent of alignment methods; 6 nm rms for sensitivity method and 13 nm rms for DWS. This demonstrates the practical usefulness and importance of the prior error analysis using the alignment algorithms before the actual alignment runs begin. The error analysis methodology, its application to the actual alignment of IROS and their results are described together with their implications.

Development of a Fast Alignment Method of Micro-Optic Parts Using Multi Dimension Vision and Optical Feedback

  • Han, Seung-Hyun;Kim, Jin-Oh;Park, Joong-Wan;Kim, Jong-Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.273-277
    • /
    • 2003
  • A general process of electronic assembly is composed of a series of geometric alignments and bonding/screwing processes. After assembly, the function is tested in a following process of inspection. However, assembly of micro-optic devices requires both processes to be performed in equipment. Coarse geometric alignment is made by using vision and optical function is improved by the following fine motion based on feedback of tunable laser interferometer. The general system is composed of a precision robot system for 3D assembly, a 3D vision guided system for geometric alignment and an optical feedback system with a tunable laser. In this study, we propose a new fast alignment algorithm of micro-optic devices for both of visual and optical alignments. The main goal is to find a fastest alignment process and algorithms with state-of-the-art technology. We propose a new approach with an optimal sequence of processes, a visual alignment algorithm and a search algorithm for an optimal optical alignment. A system is designed to show the effectiveness and efficiency of the proposed method.

  • PDF

Target alignment method of inertial confinement fusion facility based on position estimation

  • Lin, Weiheng;Zhu, Jianqiang;Liu, Zhigang;Pang, Xiangyang;Zhou, Yang;Cui, Wenhui;Dong, Ziming
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3703-3716
    • /
    • 2022
  • Target alignment technology is one of the most critical technologies in laser fusion experiments and is an important technology related to the success of laser fusion experiments. In this study, by combining the open-loop and closed-loop errors of the target alignment, the Kalman state observer is used to estimate the position of the target, which improves the observation precision of the target alignment. Then the optimized result is used to guide the alignment of the target. This method can greatly optimize the target alignment error and reduce uncertainty. With the improvement of the target alignment precision, it will greatly improve the reliability and repeatability of the experiments' results, thereby improving the success rate of the experiments.

A Study of Alignment Tolerance's Definition and Test Method for Airborne Camera (항공기 탑재용 카메라 정렬오차 정의 및 시험방안 연구)

  • Song, Dae-Buem;Yoon, Yong-Eun;Lee, Hang-Bok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.154-159
    • /
    • 2013
  • Alignment tolerance for EO/IR airborne camera using common optic is an important factor in stabilization accuracy and geo-pointing accuracy. Before airborne camera is mounted on the aircraft, defining alignment tolerance and verification of it is essential in production as well as research and development. In this paper we establish basic concept on the definition and elements of alignment tolerance for airborne camera and propose how to measure each of those elements. Components and the measurement sequence of alignment tolerance are as follows: 1) tolerance of alignment between EO and IR LOS. 2) tolerance of sensor alignment. 3) tolerance of position reporting accuracy. 4) tolerance of mount alignment

A Wafer Pre-Alignment System Using One Image of a Whole Wafer (하나의 웨이퍼 전체 영상을 이용한 웨이퍼 Pre-Alignment 시스템)

  • Koo, Ja-Myoung;Cho, Tai-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.3
    • /
    • pp.47-51
    • /
    • 2010
  • This paper presents a wafer pre-alignment system which is improved using the image of the entire wafer area. In the previous method, image acquisition for wafer takes about 80% of total pre-alignment time. The proposed system uses only one image of entire wafer area via a high-resolution CMOS camera, and so image acquisition accounts for nearly 1% of total process time. The larger FOV(field of view) to use the image of the entire wafer area worsen camera lens distortion. A camera calibration using high order polynomials is used for accurate lens distortion correction. And template matching is used to find a correct notch's position. The performance of the proposed system was demonstrated by experiments of wafer center alignment and notch alignment.

Liquid Crystal Alignment Effects on the New Homopolymerized N-(phenyl)maleimide Photopolymer Surface (새로운 광중합법을 이용한 N-(phenyl)maleimide 단독 중합체 광폴리머 표면을 이용한 액정 배향 효과)

  • Hwang, Jeoung-Yeon;Seo, Dae-Shik;Kim, Jun-Young;Kim, Tae-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.117-120
    • /
    • 2001
  • A new photoalignment material PFCPMI, poly[4-(fluorocinnamate)phenylmaleimide], was synthesized and the nematic liquid crystal (NLC) aligning capabilities on the photopolymer surface. The NLC pretilt angle generated by non-UV filter method on the PFCPMI surface was higher than that of the UV filter method. A good LC alignment by non-UV filter method was observed at $150^{\circ}C$ of annealing temperature. However, the alignment defect of the NLC by UV filter method was measured above $150^{\circ}C$ of annealing temperature. Consequently, the high pretilt angle and the good LC alignment in NLC using non-UV filter method can be acheived.

  • PDF

Optimum Alignment of Marine Engine Shaftings by the Finite Element Method (有限要素法에 의한 舶用機關軸系裝置의 最適配置에 關한 硏究)

  • Jeon, Hio-Jung;Park, Jin-Gil;Choi, Jae-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.3-14
    • /
    • 1978
  • The authors have developed a calculating method of propeller shaft alignment by the finite element method. The propeller shaft is divided into finite elements which can be treated as uniform section bars. For each element, the nodal point equation is derived from the stiffness matrix, the external force vector and the section force vector. Then the overall nodal point equation is derived from the element nodal point equation. The deflection, offset, bending moment and shearing force of each nodal point are calculated from the overall nodal point equation by the digital computer. Reactions and deflections of supporting points of straight shaft are calculated and also the reaction influence number is derived. With the reaction influence number the optimum alignment condition that satisfies all conditions is calculated by the simplex method of linear programming. All results of calculation are compared with those of Det norske Veritas, which has developed a computor program based on the three-moment theorem of the strength of materials. The authors finite element method has shown good results and will be used effectively to design the propeller shaft alignment.

  • PDF

Liquid Crystal Alignment Effects on the New Homopolymerized N-(phenyl)male iron ids Photopolymer Surface (새로운 광중합법을 이용한 N-(phenyl)maleimide 단독 중합체 광폴리머 표면을 인용한 액정 배향 효과)

  • 황정연;서대식;김준영;김태호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.117-120
    • /
    • 2001
  • A new photoalignment material PFCPMI, poly [4-(fluorocinnamate) phenylmaleimide], was synthesized and the nematic liquid crystal (NLC) aligning capabilities on the photopolymer surface. The NLC pretilt angle generated by non-UV filter method on the PFCPMI surface was higher than that of the UV filter method. A good LC alignment by non-UV filter method was observed at 150\`c of annealing temperature. However, the alignment defect of the NLC by UV filter method was measured above 150$^{\circ}C$ of annealing temperature. Consequently, the high pretilt angle and the good LC alignment in NLC using non-UV filter method can be achieved.

  • PDF