• 제목/요약/키워드: Alignment Measurement

검색결과 338건 처리시간 0.027초

Simplified Cubature Kalman Filter for Reducing the Computational Burden and Its Application to the Shipboard INS Transfer Alignment

  • Cho, Seong Yun;Ju, Ho Jin;Park, Chan Gook;Cho, Hyeonjin;Hwang, Junho
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제6권4호
    • /
    • pp.167-179
    • /
    • 2017
  • In this paper, a simplified Cubature Kalman Filter (SCKF) is proposed to reduce the computation load of CKF, which is then used as a filter for transfer alignment of shipboard INS. CKF is an approximate Bayesian filter that can be applied to non-linear systems. When an initial estimation error is large, convergence characteristic of the CKF is more stable than that of the Extended Kalman Filter (EKF), and the reliability of the filter operation is more ensured than that of the Unscented Kalman Filter (UKF). However, when a system degree is large, the computation amount of CKF is also increased significantly, becoming a burden on real-time implementation in embedded systems. A simplified CKF is proposed to address this problem. This filter is applied to shipboard inertial navigation system (INS) transfer alignment. In the filter design for transfer alignment, measurement type and measurement update rate should be determined first, and if an application target is a ship, lever-arm problem, flexure of the hull, and asynchronous time problem between Master Inertial Navigation System (MINS) and Slave Inertial Navigation System (SINS) should be taken into consideration. In this paper, a transfer alignment filter based on SCKF is designed by considering these problems, and its performance is validated based on simulations.

가방의 형태와 무게가 신체정렬에 미치는 영향 (Effect of the Body Alignment on Type and Weight of the Bag)

  • 임인혁;엄기매;김현숙
    • 대한물리치료과학회지
    • /
    • 제16권2호
    • /
    • pp.11-17
    • /
    • 2009
  • Background: The purpose of this study was to investigate the effects of the body alignment on the type and weight of the bag. Methods: The Subjects(n=62) measured posture alignment and make out the questionnaire. The questionnaire item was type of the bag, weight of the bag, side which carries the bag, and time to carry the bag. The posture alignment measured by global posture system(GPS). GPS Measurement was ASIA, acromion process, medial malleolus on Frontal plane, ear, shoulder joint, knee joint, lateral malleolus on sagittal plane, and trunk rotation on transverse plane. Results: The backpack and shoulder bag was no significant. The width of the strap bag was not significant. The side which carries on shoulder bag was statistical significance(p<.05). The time to carry the bag was statistical significance on change of posture(p<.05). A bag weight was no significant. Conclusion: This research provides the direction and carry the bag in time for the posture. This study showed that type and weight of bag does affect body alignment. This indicates that there is an interaction that plays a crucial roles in the type and weight of bag and the body alignment.

  • PDF

혼합축차이점법을 이용한 진직도 정밀측정에 있어서 센서 게인오차의 영향에 관한 연구 (A Study on the Effect of the Sensor Gain Error in the Precision Measurement of Straightness Error Using Mixed Sequential Two-Probe Method)

  • 정지훈;오정석;김경호;박천홍
    • 한국정밀공학회지
    • /
    • 제30권6호
    • /
    • pp.607-614
    • /
    • 2013
  • In this study, effect of the sensor gain error is theoretically analyzed and simulated when mixed sequential two-prove method(MTPM) is applied for the precision measurement of straightness error of a linear motion table. According to the theoretical analysis, difference of the gain errors between two displacement sensors increases measurement error dramatically and alignment error of the straightedge is also amplified by the sensor gain difference. On the other hand, if the gain errors of the two sensors are identical, most of error terms are cancelled out and the alignment error doesn't give any influence on the measurement error. Also the measurement error of the straightness error is minimized compared with that of the straightedge's form error owing to close relationship between straightness error and angular motion error of the table in the error terms.

대학 지식경영 성과측정시스템의 진단 사례연구 (Diagnosis of Performance Measurement System of Knowledge Management : A Case of University)

  • 이영찬;이승석
    • 지식경영연구
    • /
    • 제10권1호
    • /
    • pp.71-100
    • /
    • 2009
  • Recently, many of organizations build up their performance measurement system (PMS) to measure their knowledge management performance. However, the system that doesn't well reflect the organization's strategies as well as surroundings could obstruct their performance improvement, instead. Therefore, It is really important to establish the PMS to reflect organization's surroundings and strategies. The purpose of this study is to make a diagnosis of a performance measurement practice of a domestic university's knowledge management. To serve this research purpose, we examine the uptight performance index and PMS from existing references. And we diagnose the specific practices and maturity rates of measuring performances, and the recognition of the performance index at "D" university recently adopting balanced scorecard to performance evaluation through the survey on academic affairs committee members, performance evaluation committee members, and administration members. The method analyzing data from the survey is a gap analysis which includes alignment analysis, congruence analysis, consensus analysis, and confusion analysis. We make a diagnosis of performance measurement practices at "D" university, raise several points of this performance measurement system, and present the improvement plans from these problems.

  • PDF

A New Method for Measuring Azimuthal Anchoring Energy of Rubbed and UV-Exposed Polyimide Alignment Layers

  • Park, H.J.;Lee, W.K.;Kim, D.G.;Shin, D.C.;Woo, J.W.;Shin, H.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1619-1621
    • /
    • 2007
  • Novel optical measurement systems and improved cell configurations for measuring of azimuthal anchoring energies were developed. The difference between the mechanical rubbing direction and the optical easy axis that caused errors in the previous azimuthal anchoring energy measurement was compensated. In addition, the measurement accuracy of the twist angle and therefore the azimuthal anchoring energy was greatly enhanced. As a result, we were able to obtain valid azimuthal anchoring energy values for different alignment layers.

  • PDF

Normal Range of Humeral Head Positioning on the Glenoid on Magnetic Resonance Imaging: Validation through Comparison of Computed Tomography and Magnetic Resonance Imaging

  • Kim, Jung-Han;Min, Young-Kyoung
    • Clinics in Shoulder and Elbow
    • /
    • 제21권4호
    • /
    • pp.186-191
    • /
    • 2018
  • Background: To determine the normal range of humeral head positioning on magnetic resonance imaging (MRI). Methods: We selected normal subjects (64 patients; group A) to study the normal range of humeral head positioning on the glenoid by MRI measurements. To compare the MRI measurement method with the computed tomography (CT), we selected group B (70 patients) who underwent both MRI and CT. We measured the humeral-scapular alignment (HSA) and the humeral-glenoid alignment (HGA). Results: The HSA in the control group was $1.47{\pm}1.05mm$, and the HGA with and without reconstruction were $1.15{\pm}0.65mm$ and $1.03{\pm}0.59mm$, respectively, on MRI. In the test group, HSA was $2.67{\pm}1.47mm$ and HGA with and without reconstruction was $1.58{\pm}1.16mm$ and $1.49{\pm}1.08mm$, on MRI. On CT, the HSA was $1.72{\pm}1.01mm$, and HGA with and without reconstruction were $1.54{\pm}0.96mm$ and $1.59{\pm}0.93mm$, respectively. HSA was significantly different according to image modality (p=0.0006), but HGA was not significantly different regardless of reconstruction (p=0.8836 and 0.9234). Conclusions: Although additional CT scans can be taken to measure decentering in patients with rotator cuff tears, reliable measurements can be obtained with MRI alone. When using MRI, it is better to use HGA, which is a more reliable measurement value based on the comparison with CT measurement (study design: Study of Diagnostic Test; Level of evidence II).

위성체 구조시험 모델의 3차원 정밀 측정 (3-Dimensional Precision Measurement of Spacecraft Structure Test Model)

  • 윤용식;이중엽;조창래;이상설
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.131-134
    • /
    • 2001
  • The three-dimensional precision measurement technology for industry product of middle and/or large scale has been developed. Theodolite measurement system which is one of the technology is widely used in aerospace industry. This paper describes measurement method and results for spacecraft structure test model by using the measurement system. And structural stability for STM is desribed through the comparison between design values and measured values.

  • PDF

접촉식 리소그라피의 정렬공정을 위한 압전구동 초정밀 스테이지 (A Piezo-driven Ultra-precision Stage for Alignment Process of a Contact-type Lithography)

  • 최기봉;이재종;김기홍;임형준
    • 한국생산제조학회지
    • /
    • 제20권6호
    • /
    • pp.756-760
    • /
    • 2011
  • This paper proposed an alignment stage driven by piezo actuators for alignment process of a contact-type lithography. Among contact-type lithography processes, an UV-curable nanoimprint process is an unique process to be able to align patterns on upper and lower layers. An alignment stage of the UV-curable nanoimprint process requires nano-level resolution as well as high stiffness to overcome friction force due to contact moving. In this paper, the alignment stage consists of a compliant mechanism using flexure hinges, piezo actuators for high force generation, and capacitive sensors for high-resolution measurement. The compliant mechanism is implemented by four prismatic-prismatic compliant chains for two degree-of-freedom translations. The compliant mechanism is composed of flexure hinges with high stiffness, and it is directly actuated by the piezo actuators which increases the stiffness of the mechanism, also. The performance of the ultra-precision stage is demonstrated by experiments.

Liquid crystal alignment on rubbed self-assembled monolayers with fluorinated alkyl chain

  • Oh, Chan-Woo;Hwang, Seok-Gon;Park, Sang-Geon;Park, Hong-Gyu
    • 한국정보전자통신기술학회논문지
    • /
    • 제11권6호
    • /
    • pp.671-677
    • /
    • 2018
  • In this paper, we investigated the vertical alignment characteristics of liquid crystals (LCs) on fluorinated self-assembled monolayers (FSAMs). For comparison, a commercialized homeotropic polyimide (PI) layer was used as an LC alignment layer. We confirmed the successful deposition of FSAMs and the change of FSAMs before and after rubbing treatment through contact angle measurement and atomic force microscopy. The optical transmittance spectrum of the FSAMs is similar to that of the homeotropic PI layer, which is a superior optical characteristic applicable to LC devices. When FSAMs were applied to the vertically aligned (VA) LC cell, uniform and vertical LC alignments were achieved. In addition, the voltage-transmittance characteristic of VA LC cell with FSAMs was superior to that of VA LC cell with the conventional homeotropic PI layers. These results indicate that the FSAMs are suitable as the homeotropic LC alignment layer for enhanced LC devices.

전달정렬 함상 발사 고속 유도무기의 보정필터 설계에 대한 연구 (A Study on the Design of Correction Filter for High-Speed Guided Missile Firing from Warship after Transfer Alignment)

  • 김천중;이인섭;오주현;유해성;박흥원
    • 전기학회논문지
    • /
    • 제68권1호
    • /
    • pp.108-121
    • /
    • 2019
  • This paper presents the study results on the design of the correction filter to improve the azimuth error estimation of the high-speed guided missile launched from the warship after the transfer alignment. We theoretically proved that the transfer alignment performance is determined by the accuracy of the marine inertial navigation system and the observability of the attitude error state variable in the transfer alignment filter, and that most of navigation errors in high-speed guided missile are caused by azimuth error. In order to improve the azimuth estimation performance of the correction filter, the multiple adaptive estimation method and the adaptive filters adapting the measurement noise covariance or the process noise covariance are proposed. The azimuth estimation performance of the proposed adaptive filter and the existing Kalman filter are compared and analyzed each other for 8 different transfer alignment accuracy cases. As a result of comparison and analysis, it was confirmed that the adaptive filter adapting the process noise covariance has the best azimuth estimation performance. These results can be applied to the design of correction filters for high-speed guided missile.