• Title/Summary/Keyword: Alignment Error

Search Result 314, Processing Time 0.026 seconds

A Transfer Alignment Considering Measurement Time-Delay and Ship Body Flexure (측정치 시간지연과 선체의 유연성을 고려한 전달정렬 기법)

  • Lim, You-Chol;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.225-233
    • /
    • 2001
  • This paper deals with the transfer alignment problem of SDINS(StrapDown Inertial Navigation System) subjected to roll and pitch motions of the ship. Specifically, to reduce alignment errors induced by measurement time-delay and ship body flexure, an error compensation method is suggested based on delay state augmentation and DCM(Direction Cosine Matrix) partial matching. A linearized error model for the velocity and attitude matching transfer alignment system is first derived by linearizing the nonlinear measurement equation with respect to its time delay and augmenting the delay state into the conventional linear state equations. And then DCM partial matching is properly combined to reduce effects of a ship's Y axis flexure. The simulation results show that the suggested method is effective enough resulting in considerably less azimuth alignment errors.

  • PDF

Ship Flexure Error Compensation of Transfer Alignment via Robust State Estimation (강인한 상태추정에 의한 전달정렬의 선체유연성오차 보상)

  • Lim, You-Chol;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.178-184
    • /
    • 2002
  • This paper deals with the transfer alignment problem of SDINS(StrapDown Inertial Navigation System) subjected to roll and pitch motions of the ship. In order to reduce alignment errors induced by ship body flexure, a linearized error model for the velocity and attitude matching transfer alignment system is first derived by linearizing the nonlinear measurement equation with respect to the dominant y axis component and defining the flexure state of random constant type. And then a robust state estimation scheme is introduced to account for modeling uncertainty of the flexure. By interpreting the simulation results and comparing with the velocity and DCM(Direction Cosine Matrix) partial matching method, it is shown that the proposed method is effective enough to improve the azimuth alignment performance.

The Effect of Neck and Shoulder Self-Stretching Exercise Using Audiovisual Media on Neck Pain, Postural Alignment, and Joint Position Error in Women with Chronic Neck Pain (시청각 매체를 활용한 목, 어깨 자가신장운동이 만성 목통증 여성의 통증, 자세정렬과 관절위치감각에 미치는 영향)

  • Jeong, Yeon-woo
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.28 no.1
    • /
    • pp.39-51
    • /
    • 2022
  • Background: The purpose of this study is to investigate the effect of neck and shoulder self-stretching exercise using audiovisual media on neck pain, postural alignment, and joint position error in women with chronic neck pain. Methods: The subjects included 20 women that gave consent to participate in the study voluntarily. They performed the self-stretching exercises using audiovisual media was carried out 20 minutes 5 times a week during 3 weeks. Neck disability index (NDI) and visual analogue scale (VAS) were used to measure the functional disability and pain, A pressure pain threshold was measured using an algometer, and a cervical range of motion (CROM) measurement tool was used to measure the range of motion and error of proprioceptive position sense of the cervical spine. To assess posture alignment, forward head angle (FHA), forward shoulder angle (FSA) were measured using image J software. Results: The neck pain intensity was statistically significantly within group (p<.05). Neck and shoulder functional disability were a statistically significant difference within group (p<.05). Splenius capitis and upper trapezius pressure pain threshold were statistically significant difference in within group (p<.05). The postural alignment was statistically significantly within group (p<.05). The cervical range of motion in neck extension, right and left lateral flexion were statistically significantly within group (p<.05). The joint position error in neck flexion, extension, right and left lateral flexion decreased statistically significantly within group (p<.05). Conclusion: Self-stretching exercise using audiovisual media increased the mobility of the neck, decreased neck pain and joint position error, and improved posture alignment. As a result, there was a positive effect by applying the self-stretching exercise using audiovisual media to people with neck pain. Based on this, it is thought that it can be used as the basis for research related to home training programs for healthy self-management.

Mis-alignment Channel Performance of Error Correcting 4/6 Modulation Codes for Holographic Data Storage (홀로그래픽 저장장치를 위한 오류 정정 4/6 변조 부호의 어긋남 채널 성능)

  • Yang, Gi-Ju;Kim, Jin-Young;Lee, Jae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12C
    • /
    • pp.971-976
    • /
    • 2010
  • We introduce an error correcting 4/6 modulation codes for holographic data storage, and simulate under adding mis-alignment noise. The holographic data storage has two-dimensional intersymbol interference. To increase the channel performance, it is necessary to use modulation code. Furthermore, if the modulation code has trellis structure, error correcting capability is added. The error correcting 4/6 modulation code shows better performance than conventional modulation codes with and without mis-alignment noise.

The Grinding Machining Characteristics of $ZrO_2$ Ceramics Ferrule in the Chucking Alignment Error (척킹 평형 정렬 오차에 따른 지르코니아 세라믹스 페룰의 연삭 가공 특성)

  • Lee S.W.;Kim G.H.;Choi Y.J.;Choi H.Z.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.19-22
    • /
    • 2005
  • As the optical communication industry is developed, the demand of optical communication part is increasing. $ZrO_2$ ceramic ferrule is very important part which can determines the transmission efficiency and information quality to connect the optical fibers. In general $ZrO_2$ ceramic ferrule is manufactured by grinding process because the demands precision is very high. And the co-axle grinding process of $ZrO_2$ ceramic ferrule is to make its concentricity all of uniform before centerless grinding. When co-axle grinding of ferrule supported by two pin, pin chucking alignment accuracy is very important. This paper deals with the analysis of the chucking alignment experiment with parallel error on the micro feeding equipment. Thus, if possible be finding highly good the chucking alignment of two pin.

  • PDF

Error Analysis of Initial Fine Alignment for Non-leveling INS (경사각을 갖는 관성항법시스템 초기 정밀정렬의 오차 분석)

  • Cho, Seong-Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.595-602
    • /
    • 2008
  • In this paper, performance of the initial alignment for INS whose attitude is not leveled is investigated. Observability of the initial alignment filter is analyzed and estimation errors of the estimated state variables are derived. First, the observability is analyzed using the rank test of observability matrix and the normalized error covariance of the Kalman filter based on the 10-state model. In result, it can be seen that the accelerometer biases on horizontal axes are unobservable. Second, the steady-state estimation errors of the state variables are derived using the observability equation. It is verified that the estimates of the state variables have errors due to the unobservable state variables and the non-leveling tilt angles of a vehicle containing the INS. Especially, this paper shows that the larger the tilt angles of the vehicle are, the larger the estimation errors corresponding to the sensor biases are. Finally, it is shown that the performance of the 8-state model excepting the accelerometer biases on horizontal axes is better than that of the 10-state model in the initial alignment by simulation.

Observability Analysis of Alignment Errors in GPS/INS

  • Lee Mun Ki;Hong Sinpyo;Lee Man Hyung;Kwon Sun-Hong;Chun Ho-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1253-1267
    • /
    • 2005
  • Misalignment can be an important problem in the integration of GPS/INS. Observability analysis of the alignment errors in the integration of low-grade inertial sensors and multi-antenna GPS is presented in this paper. A control-theoretic approach is adopted to study the observability of time-varying error dynamics models. The relationship between vehicle motions and the observability of the errors in the lever arm and relative attitude between GPS antenna array and IMU is given. It is shown that alignment errors can be made observable through maneuvering. The change of acceleration makes the components of the relative attitude error that are orthogonal to the direction of the acceleration change observable. The change of angular velocity makes the components of the lever arm error that are orthogonal to the direction of the angular velocity observable. The motion of constant angular velocity has no influence on the estimation of the lever arm.

Alignment and Navigation of Inertial Navigation and Guidance Unit using Inertial Explorer Software (Inertial Explorer 소프트웨어를 이용한 관성항법유도장치 정렬 및 항법계산)

  • Kim, Jeong-Yong;Oh, Jun-Seok;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.50-59
    • /
    • 2010
  • In this paper, the alignment and navigation results by INGU(Inertial Navigation and Guidance Unit) onboard software and by Inertial Explorer which is a post-processing software specialized for IMU(Inertial Measurement Unit) are compared for identification of inertial sensor error models and estimation of alignment and navigation errors for KSLV-I INGU. For verification of the IMU error estimated by Kalman Filter of Inertial Explorer, the covariance parameters of inertial sensor error model state are identified by using stochastic error model of inertial sensors estimated by Allan variance and the alignment and navigation test with static condition and the land navigation test with dynamic condition are carried out. The validity of inertial sensor model for KSLV-I INGU is verified by comparison the alignment and navigation results of INGU on-board software and Inertial Explorer.

Measurement and Correction of PCB Alignment Error for Screen Printer Using Machine Vision (1) (머신비전을 이용한 PCB 스크린인쇄기의 정렬오차측정 및 위치보정 (1))

  • 신동원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.88-95
    • /
    • 2003
  • This paper presents the measurement and correction method of PCB alignment errors for PCB screen printer. Electronic equipment is getting smaller and yet must satisfy high performance standard. Therefore, there is a great demand for PCB with high density. However conventional PCB screen printer doesn't have enough accuracy to accommodate the demand fur high-resolution circuit pattern and high-density mounting capacity of electronic chips. It is because the alignment errors of PCB occur when it is loaded to the screen printer. Therefore, this study focuses on the development of the system which is able to measure and correct alignment errors with high-accuracy. An automatic optical inspection part measures the PCB alignment errors using machine vision, and the high-accuracy 3-axis stage makes correction for these errors. This system used two CCD cameras to get images of two fiducial marks of PCB. The geometrical relationship between PCB, cameras, and xy$\theta$ stage is derived, and analytical equations for alignment errors are also obtained. The unknown parameters including camera declining angles and etc. can be obtained by initialization process. Finally, the proposed algorithm is verified by experiments by using test bench.