• Title/Summary/Keyword: Aligned thin film

Search Result 114, Processing Time 0.024 seconds

Facile preparation of superhydrophobic thin films using non-aligned carbon nanotubes

  • Goh, Yee-Miin;Han, Kok Deng;Tan, Lling-Lling;Chai, Siang-Piao
    • Advances in nano research
    • /
    • v.2 no.4
    • /
    • pp.219-225
    • /
    • 2014
  • A simple preparation method on creating superhydrophobic surface using non-aligned carbon nanotubes (CNTs) was demonstrated. Superhydrophobic CNT thin films were prepared by doping a sonicated mixture of CNTs and chloroform onto a glass slide. Water contact angles of the CNT thin films were measured using a contact angle goniometer. The thin films were characterized using laser microscope and scanning electron microscope. Experimental results revealed that the highest average contact angle of $162{\pm}2^{\circ}$ was achieved when the films' thickness was $1.628{\mu}m$. The superhydrophobic surface was stable as the contact angle only receded from $162{\pm}2$ to $157{\pm}2^{\circ}$ after 10 min under normal atmospheric condition.

Synthesis of Vertically Aligned CuO Nanorods by Thermal Oxidation (열산화법을 이용한 산화구리 나노선 수직성장)

  • Kim, Jimin;Jung, Hyuck;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • A simple thermal oxidation of Cu thin films deposited on planar substrates established a growth of vertically aligned copper oxide (CuO) nanorods. DC sputter-deposited Cu thin films with various thicknesses were oxidized in environments of various oxygen partial pressures to control the kinetics of oxidation. This is a method to synthesize vertically aligned CuO nanorods in a relatively shorter time and at a lower cost than those of other methods such as the popular hydrothermal synthesis. Also, this is a method that does not require a catalyst to synthesize CuO nanorods. The grown CuO nanorods had diameters of ~100 nm and lengths of $1{\sim}25{\mu}m$. We examined the morphology of the synthesized CuO nanorods as a function of the thickness of the Cu films, the gas environment, the oxidation time, the oxidation temperature, the oxygen gas flow rate, etc. The parameters all influence the kinetics of the oxidation, and consequently, the volume expansion in the films. Patterned growth was also carried out to confirm the hypothesis of the CuO nanorod protrusion and growth mechanism. It was found that the compressive stress built up in the Cu film while oxygen molecules incorporated into the film drove CuO nanorods out of the film.

Hydrothermally deposited Hydrogen doped Zinc Oxide nano-flowers structures for amorphous silicon thin film solar cells

  • Kim, Yongjun;Kang, Junyoung;Jeon, Minhan;Kang, Jiyoon;Hussain, Shahzada Qamar;Khan, Shahbaz;Kim, Sunbo;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.236.1-236.1
    • /
    • 2015
  • The surface morphology of front transparent conductive oxide (TCO) films is very important to achieve high current density in amorphous silicon (a-Si) thin film solar cells since it can scatter the light in a better way. In this study, we present the low cost hydrothermal deposited uniform zinc oxide (ZnO) nano-flower structure with various aspect ratios for a-Si thin film solar cells. The ZnO nano-flower structures with various aspect ratios were grown on the RF magnetron sputtered AZO films. The diameters and length of the ZnO nano-flowers was controlled by varying the annealing time. The length of ZnO nano-flowers were varied from 400 nm to $2{\mu}m$ while diameter was kept higher than 200 nm to obtain different aspect ratios. The ZnO nano-flowers with higher surface area as compared to conventional ZnO nano structure are preferred for the better light scattering. The conductivity and crystallinity of ZnO nano-flowers can be enhanced by annealing in hydrogen atmosphere at 350 oC. The vertical aligned ZnO nano-flowers showed higher haze ratio as compared to the commercially available FTO films. We also observed that the scattering in the longer wavelength region was favored for the high aspect ratio of ZnO nano-flowers. Therefore, we proposed low cost and vertically aligned ZnO nano-flowers for the high performance of thin film solar cells.

  • PDF

Characterization of Thin Film Transistor using $Ta_2O_5$ Gate Dielectric

  • Um, Myung-Yoon;Lee, Seok-Kiu;Kim, Hyeong-Joon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.157-158
    • /
    • 2000
  • In this study, to get the larger drain current of the device under the same operation condition as the conventional gate dielectric SiNx thin film transistor devices, we introduced new gate dielectric $Ta_2O_5$ thin film which has high dielectric constant $({\sim}25)$ and good electrical reliabilities. For the application for the TFT device, we fabricated the $Ta_2O_5$ gate dielectric TFT on the low-temperature-transformed polycrystalline silicon thin film using the self-aligned implantation processing technology for source/drain and gate doping. The $Ta_2O_5$ gate dielectric TFT showed better electrical performance than SiNx gate dielectric TFT because of the higher dielectric constant.

  • PDF

Fabrication of the Solution-Derived BiAlO Thin Film by Using Brush Coating Process for Liquid Crystal Device (브러쉬 코팅 공정을 이용한 용액 기반 BiAlO 박막의 제작과 액정 소자에의 응용)

  • Lee, Ju Hwan;Kim, Dai-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.321-326
    • /
    • 2021
  • We fabricated BiAlO thin film by a solution process with a brush coating to be used as liquid crystal (LC) alignment layer. Solution-processed BiAlO was coated on the glass substrate by brush process. Prepared thin films were annealed at different temperatures of 80℃, 180℃, and 280℃. To verify whether the BiAlO film was formed properly, X-ray photoelectron spectroscopy analysis was performed on Bi and Al. Using a crystal rotation method by polarized optical microscopy, LC alignment state was evaluated. At the annealing temperature of 280℃, the uniform homogenous LC alignment was achieved. To reveal the mechanism of LC alignment by brush coating, field emission scanning electron microscope was used. Through this analysis, spin-coated and brush coated film surface were compared. It was revealed that physical anisotropy was induced by brush coating at a high annealing temperature. Particles were aligned in one direction along which brush coating was made, resulting in a physical anisotropy that affects a uniform LC alignment. Therefore, it was confirmed that brush coating combined with BiAlO thin film annealed at high temperature has a significant potential for LC alignment.

A study on the physical characteristics and conductivities of $\alpha$ -Sexithienyl thin films with various deposition conditions (성막조건에 따른 $\alpha$-Sexithienyl 박막의 물리적 특성 및 전기전도도에 관한 연구)

  • 박용인;권오관;오세운;최종선;김영관;신동명;강도열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.91-94
    • /
    • 1997
  • $\alpha$-sexithienyl($\alpha$-6T) thin films were deposited by Organic Molecular Beam Deposition(OMBD) technique, where the $\alpha$-6T was synthesized and purified by the sublimation method. The thin films of the $\alpha$-6T were deposited under various deposition conditions. The effects of deposition rate, substrate temperature. and vacuum pressure an the formation of these films have been studied. The molecular orientations of $\alpha$-6T films were investigated with the polarized electronic absorption spectroscopy. The molecules in the $\alpha$-6T film deposited at a low deposition rate under a high vacuum were aligned almost perpendicular to the substrate. The film deposited at an elevated substrate temperature (~9 $O^{\circ}C$) showed higher conductivity than the film deposited at room temperature.

  • PDF

A Roll-to-Roll Process for Manufacturing Flexible Active-Matrix Backplanes Using Self-Aligned Imprint Lithography and Plasma Processing

  • Taussig, Carl;Jeffrey, Frank
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.808-810
    • /
    • 2005
  • Inexpensive large area arrays of thin film transistors (TFTs) on flexible substrates will enable many new display products that cannot be cost effectively manufactured by conventional means. This paper presents a new approach for low cost manufacturing of electronic devices using roll-to-roll (R2R) processes exclusively. It was developed in partnership by Hewlett Packard Laboratories and Iowa Thin Film Technologies (ITFT), a solar cell manufacturer. The approach combines ITFT's unique processes for vacuum deposition and etching of semiconductors, dielectrics and metals on continuous plastic webs with a method HP has invented for the patterning and aligning the multiple layers of a TFT with sub-micron accuracy and feature size.

  • PDF

Effects of processing temperature and optical anisotropy of a polymeric insulator on organic thin-film transistors

  • Bae, Jin-Hyuk;Kim, Won-Ho;Na, Jun-Hee;Lee, Sin-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1107-1110
    • /
    • 2006
  • We investigate the effect of processing temperature of gate insulator and optical anisotropy on organic thin-film transistors (OTFTs). The insulator film which was processed lower temperature than solvent boiling temperature can lead more aligned pentacne molecules compare to higher processed insulator film. It finally gives rise to the big increase of carrier mobility in OTFTs, although there are little difference at the seriously affecting properties to device performance, for example roughness of gate insulator film.

  • PDF

Vertically Well-Aligned ZnO Nanowires on c-$Al_2O_3$ and GaN Substrates by Au Catalyst

  • Park, Hyun-Kyu;Oh, Myung-Hoon;Kim, Sang-Woo;Kim, Gil-Ho;Youn, Doo-Hyeob;Lee, Sun-Young;Kim, Sang-Hyeob;Kim, Ki-Chul;Maeng, Sung-Lyul
    • ETRI Journal
    • /
    • v.28 no.6
    • /
    • pp.787-789
    • /
    • 2006
  • In this letter, we report that vertically well-aligned ZnO nanowires were grown on GaN epilayers and c-plane sapphire via a vapor-liquid-solid process by introducing a 3 nm Au thin film as a catalyst. In our experiments, epitaxially grown ZnO nanowires on Au-coated GaN were vertically well-aligned, while nanowires normally tilted from the surface when grown on Au-coated c-$Al_2O_3$ substrates. However, pre-growth annealing of the Au thin layer on c-$Al_2O_3$ resulted in the growth of well-aligned nanowires in a normal surface direction. High-resolution transmission electron microscopy measurements showed that the grown nanowires have a hexagonal c-axis orientation with a single-crystalline structure.

  • PDF

Liquid crystal aligning capabilities for vertical aligned NLC on the $CeO_x$ thin film layer with thermal evaporation

  • Han, Jin-Woo;Kim, Mi-Jung;Kim, Jong-Yeon;Han, Jeong-Min;Kim, Young-Hwan;Kim, Jong-Hwan;Kim, Byoung-Yong;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.371-371
    • /
    • 2007
  • In this study, liquid crystal (LC) aligning capabilities for vertical alignment on the $CeO_x$ thin film by thermal evaporation method were investigated. Also, the control of pretilt angles and thermal stabilities of the NLC treated on $CeO_x$ thin film were investgated. The uniform LC alignment on the $CeO_x$ thin film surfaces and good thermal stabilities with thermal evaporation can be achieved. It is considerated that the LC alignment on the $CeO_x$ thin film by thermal evaporation is attributed to elastic interaction between LC molecules and micro-grooves at the $CeO_x$ thin film surface created by evaporation. In addition, it can be achieved the good electro-optical (EO) properties of the VA-LCD on $CeO_x$ thin film layer with oblique thermal evaporation.

  • PDF