• Title/Summary/Keyword: Algorithms and Procedures

Search Result 242, Processing Time 0.032 seconds

Material Topology Optimization Design of Structures using SIMP Approach Part I : Initial Design Domain with Topology of Partial Holes (SIMP를 이용한 구조물의 재료 위상 최적설계 Part I : 부분적인 구멍의 위상을 가지는 초기 설계영역)

  • Lee, Dong-Kyu;Park, Sung-Soo;Shin, Soo-Mi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.9-18
    • /
    • 2007
  • This study shows an implementation of partial holes in an initial design domain in order to improve convergences of topology optimization algorithms. The method is associated with a bubble method as introduced by Eschenauer et al. to overcome slow convergence of boundary-based shape optimization methods. However, contrary to the bubble method, initial holes are only implemented for initializations of optimization algorithm in this approach, and there is no need to consider a characteristic function which defines hole's deposition during every optimization procedure. In addition, solid and void regions within the initial design domain are not fixed but merged or split during optimization Procedures. Since this phenomenon activates finite changes of design parameters without numerically calculating movements and positions of holes, convergences of topology optimization algorithm can be improved. In the present study, material topology optimization designs of Michell-type beam utilizing the initial design domain with initial holes of varied sizes and shapes is carried out by using SIMP like a density distribution method. Numerical examples demonstrate the efficiency and simplicity of the present method.

Wireless Access Network Virtualization Based on Distributed Antenna Systems (분산 안테나 시스템에 기반한 무선 액세스망 가상화)

  • Kim, Su Min;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2085-2094
    • /
    • 2012
  • In this paper, we propose a wireless access network virtualization algorithm based on a digital unit (DU)-radio unit (RU) separated network structure in a cellular network with multiple radio access technologies (RATs). The proposed wireless access network virtualization algorithm consists of a baseline access network virtualization, RAT virtualization, and access path migration algorithms. Final wireless access network virtualization is performed by sequentially performing these procedures. Through system-level simulations which assume 3GPP LTE and WiMAX systems, the performance of the proposed wireless access network virtualization is evaluated in terms of system throughput for two scenarios according to asymmetry of network traffic load. Numerical results show that our proposed wireless access network virtualization algorithm achieves significant system throughput gain even in asymmetric traffic load and user distribution situations.

Extensional Vibration Analysis of Curved Beams Including Rotatory Inertia and Shear Deformation Using DQM (미분구적법(DQM)을 이용 회전관성 및 전단변형을 포함한 곡선 보의 신장 진동해석)

  • Kang, Ki-Jun;Park, Cha-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.284-293
    • /
    • 2016
  • One of the most efficient procedures for the solution of partial differential equations is the method of differential quadrature. The differential quadrature method (DQM) has been applied to a large number of cases to overcome the difficulties of complex algorithms of computer programming, as well as the excessive use of storage due to the conditions of complex geometry and loading. The in-plane vibrations of curved beams with extensibility of the arch axis, including the effects of rotatory inertial and shear deformation, are analyzed by the DQM. The fundamental frequencies are calculated for members with various slenderness ratios, shearing flexibilities, boundary conditions, and opening angles. The results are compared with the numerical results obtained by other methods for cases in which they are available. The DQM gives good mathematical precision even when only a limited number of grid points is used, and new results according to diverse variations are also suggested.

Predicting Dynamic Response of a Railway Bridge Using Transfer-Learning Technique (전이학습 기법을 이용한 철도교량의 동적응답 예측)

  • Minsu Kim;Sanghyun Choi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.39-48
    • /
    • 2023
  • Because a railway bridge is designed over a long period of time and covers a large site, it involves various environmental factors and uncertainties. For this reason, design changes often occur, even if the design was thoroughly reviewed in the initial design stage. In particular, design changes of large-scale facilities, such as railway bridges, consume significant time and cost, and it is extremely inefficient to repeat all the procedures each time. In this study, a technique that can improve the efficiency of learning after design change was developed by utilizing the learning result before design change through transfer learning among deep-learning algorithms. For analysis, scenarios were created, and a database was built using a previously developed railway bridge deep-learning-based prediction system. The proposed method results in similar accuracy when learning only 1000 data points in the new domain compared with the 8000 data points used for learning in the old domain before the design change. Moreover, it was confirmed that it has a faster convergence speed.

Fault Detection Performance Analysis of GNSS Integrity RAIM (GNSS 무결성을 위한 RAIM 기법의 고장검출 성능 분석)

  • Kim, Ji Hye;Park, Kwan Dong;Kim, Du Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.3
    • /
    • pp.49-56
    • /
    • 2012
  • Performance analysis on RAIM, which is one of the techniques for monitoring integrity to ensure the reliability of GPS, was conducted in this study. RAIM is such a method which allows its user to monitor integrity in the stand-alone mode. Among the existing RAIM procedures, the representative methods including the RCM (Range Comparison Method), LSRM (Least Square Residual Method), Parity approach and WRAIM (Weighted RAIM) were evaluated, and their performance was analyzed. To validate the performance of the implemented algorithms, fault detection was tried on the clock malfunctioning event of PRN 23 occurred on January 1st, 2004. As a result, it was identified that the LSRM and the WRAIM detected all the faults happened in the event. In the case of RCM, all the states of fault were detected except for the error which occurred as a false alarm at one epoch. Furthermore, simulated biases were added for each satellite to analyze the sensitivity of each algorithm. Consequently, when biases of the 9-13 meters range were simulated for the RCM and LSRM algorithm, all the malfunctions were detected. For the WRAIM method, it could detect range biases greater than 15 meters.

Prolog Tailoring Technique on Epilog Tailored Procedures (에필로그 테일러된 프로시저를 위한 프롤로그 테일러링 기법)

  • Jhi, Yoon-Chan;Kim, Ki-Chang
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.5
    • /
    • pp.1345-1356
    • /
    • 1998
  • Prolog tailoring technique, an optimization method to improve the execution speed of a procedure, is proposed in this paper. When a procedure is frequently and repeatedly called and the machine has a lot of callee-saved registers, optimizing prolog and epilog can become an important step of optimization. Epilg tailoring supported by IBM XL C Compiler has been known to improve procedure's execution speed by reducing register restore instructions on execution paths, but no algorithms for prolog tailoring has been proposed yet. The prolog generated by the prolog tailoring algorithm proposed in this paper executes considerably smaller number of register save instructions at run-time. This means the total number of instructions to be executed is decreased resulting in an improvement on the procedure's execution speed. To maintain the correctness of code, prolog code should not be inserted inside diamond structures of loop structures. This paper proposes a prolog tailoring technique which generates register save instructions at the best position in a control flow graph while not allowing the insertion of any prolog code inside diamond structures of loop structures.

  • PDF

Optimization of Gaussian Mixture in CDHMM Training for Improved Speech Recognition

  • Lee, Seo-Gu;Kim, Sung-Gil;Kang, Sun-Mee;Ko, Han-Seok
    • Speech Sciences
    • /
    • v.5 no.1
    • /
    • pp.7-21
    • /
    • 1999
  • This paper proposes an improved training procedure in speech recognition based on the continuous density of the Hidden Markov Model (CDHMM). Of the three parameters (initial state distribution probability, state transition probability, output probability density function (p.d.f.) of state) governing the CDHMM model, we focus on the third parameter and propose an efficient algorithm that determines the p.d.f. of each state. It is known that the resulting CDHMM model converges to a local maximum point of parameter estimation via the iterative Expectation Maximization procedure. Specifically, we propose two independent algorithms that can be embedded in the segmental K -means training procedure by replacing relevant key steps; the adaptation of the number of mixture Gaussian p.d.f. and the initialization using the CDHMM parameters previously estimated. The proposed adaptation algorithm searches for the optimal number of mixture Gaussian humps to ensure that the p.d.f. is consistently re-estimated, enabling the model to converge toward the global maximum point. By applying an appropriate threshold value, which measures the amount of collective changes of weighted variances, the optimized number of mixture Gaussian branch is determined. The initialization algorithm essentially exploits the CDHMM parameters previously estimated and uses them as the basis for the current initial segmentation subroutine. It captures the trend of previous training history whereas the uniform segmentation decimates it. The recognition performance of the proposed adaptation procedures along with the suggested initialization is verified to be always better than that of existing training procedure using fixed number of mixture Gaussian p.d.f.

  • PDF

LMI Design of Multi-Objective$ Η_2/Η_\infty$Controllers for an Inverted Pendulum on the Cart Using Polytope Models (폴리토프 모델을 이용한 도립진자의 다목적$ Η_2/Η_\infty$ 제어기의 LMI 설계)

  • 이상철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.1
    • /
    • pp.6-13
    • /
    • 2002
  • This paper deals with the linear matrix inequality (LMI) design procedures for multi-objective Η$_2$$_{\infty}$ controllers with pole-placement constraints for an inverted pendulum system modeled as convex polytopes to ensure the stabilizing regulator and tracking performances. Polytopic models with multiple linear time-invariant models linearized at some operating points are derived to design controllers overcoming the conservativeness such as a controller may have when it is designed for a model linearized at a single operating point. Multi-objective controllers are designed for polytopic models by the LMT design technique with convex algorithms. It is observed that the inverted pendulum controlled by any controller designed for each polytopic model is stabilizingly restored to the vertical angle position for initial values of larger tilt anlges.

Design of Interplanetary Orbit by Lambert Solution (람베르트 해를 이용한 행성 간 궤도 설계)

  • Kim, Dong-Sun
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.72-78
    • /
    • 2024
  • It is essential to coincide with moving target planet at future arrival changing point during space flight time in an interplanetary orbit design. Transition orbit elements can be obtained from traditional Lambert solutions by adjusting initial and final positions include flight time. Two-point boundary values of orbits can be selected in the design process. From this point of view, interplanetary orbits are infinite if they can be acquired from departure velocity without limit. However, appropriate and optimized procedures are needed to obtain an optimum interplanetary orbit to meet given conditions. The departure velocity is highly dependent on space launch vehicle's ability up to now. In this paper, algorithms of professor Howard Curtis at Embry-Riddle Aeronautical University were applied to obtain Lambert solution and orbit elements.

In-Plane Buckling Analysis of Asymmetric Curved Beam Using DQM (미분구적법(DQM)을 이용한 비대칭 곡선보의 내평면 좌굴해석)

  • Kang, Ki-Jun;Park, Cha-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4706-4712
    • /
    • 2013
  • One of the efficient procedures for the solution of partial differential equations is the method of differential quadrature. This method has been applied to a large number of cases to circumvent the difficulties of programming complex algorithms for the computer, as well as excessive use of storage due to conditions of complex geometry and loading. Under in-plane uniform distributed load, the buckling of asymmetric curved beam with varying cross section is analyzed by using differential quadrature method (DQM). Critical load due to diverse cross section variation and opening angle is calculated. Analysis result of DQM is compared with the result of exact analytic solution. As DQM is used with small grid points, exact analysis result is shown. New result according to diverse cross section variation is also suggested.