Kim, Mi-Hee;Yang, Dae-Hyeon;Kang, Joo-Won;Kim, Jae-Yeol
Journal of the Architectural Institute of Korea Structure & Construction
/
v.34
no.5
/
pp.3-11
/
2018
Since the tensegrity structure is flexible and variable, the study on the mobility to the tensegrity has been conducted. However, it is difficult to apply the tensegrity to the architecture field due to several limits. This paper describes the methodology for the analysis of the shape change process of single prism tensegrity structure as an initial study. To apply the tensegrity structure to the architectural field, the assemblage and mathematical formulation procedures of the single prism tensegrity structures are carried out. And single prism tensegrity are presented to the computational strategies for simulate the shape change of those structures. Next, the investigation of structural behaviors through various cases of target displacements is described. Also, the summary of these methods in algorithms is illustrated. As a result it is confirmed that the single prism tensegrity structure model converges 99% on average to a given target node by using the proposed algorithm. Therefore, it is confirmed that the proposed algorithm and program are suitable for shape change analysis of single prism tensegrity structure model.
KSCE Journal of Civil and Environmental Engineering Research
/
v.14
no.6
/
pp.1309-1317
/
1994
Because the stiffening girders are constructed after the installation of hangers for typical suspension bridge, no additional tensioning to hangers in construction is necessary for this bridge type in which main cable is earth-anchored. However, for self-anchored suspension bridge, hangers are installed after temporarily supporting stiffening girders constructed in previous stage. Therefore, initial tension is required on installing hangers. Tension of hangers varies as the construction proceeds. Hence, it is necessary to determine the most efficient method of installing hangers among several methods. This study presents finite element procedures and the algorithms of construction stage analysis to simulate construction processes. Geometric nonlinear analysis scheme is also included. The most effective method regarding the installation of hangers is presented through the examples of actual bridge model.
In this study, Radial Basis Function(RBF) Neural Networks Model, a kind of Hybrid Neural Networks was applied to hydrological forecasting in a small watershed. RBF Neural Networks Model has four kinds of parameters in it and consists of unsupervised and supervised training patterns. And Gaussian Kernel Function(GKF) was used among many kinds of Radial Basis Functions(RBFs). K-Means clustering algorithm was applied to optimize centers and widths which ate the parameters of GKF. The parameters of RBF Neural Networks Model such as centers, widths weights and biases were determined by the training procedures of RBF Neural Networks Model. And, with these parameters the validation procedures of RBF Neural Networks Model were carried out. RBF Neural Networks Model was applied to Wi-Stream basin which is one of the IHP Representative basins in South Korea. 10 rainfall events were selected for training and validation of RBF Neural Networks Model. The results of RBF Neural Networks Model were compared with those of Elman Neural Networks(ENN) Model. ENN Model is composed of One Step Secant BackPropagation(OSSBP) and Resilient BackPropagation(RBP) algorithms. RBF Neural Networks shows better results than ENN Model. RBF Neural Networks Model spent less time for the training of model and can be easily used by the hydrologists with little background knowledge of RBF Neural Networks Model.
Jae-Hyun, Jo;Jin-Hyoung, Jeong;Seung-Hun, Kim;Sang-Sik, Lee
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.15
no.6
/
pp.485-491
/
2022
Intravenous injection is the most frequent invasive treatment for inpatients and is widely used for parenteral nutrition administration and blood products, and more than 1 billion procedures are used for peripheral catheter insertion, blood collection, and other IV therapy per year. Intravenous injection is one of the difficult procedures to be performed only by trained nurses with intravenous injection training, and failure can lead to thrombosis and hematoma or nerve damage to the vein. Accordingly, studies on auxiliary equipment capable of visualizing the vein structure of the back of the hand or arm are being published to reduce errors during intravenous injection. This study is a study on the performance difference according to the number of LEDs irradiating the 850nm wavelength band on a vein detector that visualizes the vein during intravenous injection. Four LED PCBs were produced by attaching NIR filters to CCD and CMOS camera lenses irradiated on the skin to acquire images, sharpen the acquired images using image processing algorithms, and project the sharpened images onto the skin. After that, each PCB was attached to the front end of the vein detector to detect the vein image and create a performance comparison questionnaire based on the vein image obtained for performance evaluation. The survey was conducted on 20 nurses working at K Hospital.
This study designs and validates a greenhouse complex environmental control algorithm with a multi-phase processing scheme that can combine and control actuators according to the degree of change in the greenhouse environment. The composite environmental control system is a system in which the complex environmental controller analyzes the information detected by sensors and operates appropriately actuators to maintain the crop growth environment. A composite environmental controller directs control devices driving actuators through a composite environmental control algorithm, which calculates the values necessary for the operation of the control devices. Most existing algorithms carry out control procedures on a single phase by iteration cycle, which can cause abnormal changes in the greenhouse environment due to errors in output. The proposed algorithm distributes control procedures over multiple phases: environmental control, environmental control, and device operation, and every iteration cycle, detects environmental changes in the environmental control phase first, and then combines control devices that can control the environment in the environmental control phase, and finally, performs the controls to derive the actuators in the device operation phase. The proposed algorithm is designed based on the analysis of the relationship between greenhouse environmental elements and control devices deriving actuators. According to verification analysis, the multi-phase processing scheme provides room to modify or supplement the setting value and enables the control devices to reflect changes in the associated environmental components.
Kim, Dong-Gyu;Park, Jin-Oh;Lee, Moon Seok;Park, Young-Mi;Kim, Hyoung-Nam
Journal of the Institute of Electronics and Information Engineers
/
v.52
no.4
/
pp.37-45
/
2015
In modern electronic warfare systems, a demand on the more accurate estimation method based on TDOA and FDOA has been increased. TDOA/FDOA localization consists of two-stage procedures: the extraction of information from signals and the estimation of emitter location. Various algorithms based on CAF(complex ambiguity function), which is known as a basic method, has been presented in the area of extractions. When we extract TDOA and FDOA information using a conventional method based on the CAF algorithm from communication signals, considerably long integration time is required for the accurate position estimation of an unknown emitter far from sensors more than 300 km. Such long integration time yields huge amount of transmission data from sensors to a central processing unit, resulting in heavy computiational complexity. Therefore, we theoretically analyze the integration time for TDOA/FDOA information using CRLB and propose a two-stage global optimization algorithm which can minimize the transmission time and a computational complexity. The proposed method is compared with the conventional CAF-based algorithms in terms of a computational complexity and the CRLB to verify the estimation performance.
Kim, Dong-Gyu;Kim, Yong-Hee;Park, Jin-Oh;Lee, Moon Seok;Park, Young-Mi;Kim, Hyoung-Nam
Journal of the Institute of Electronics and Information Engineers
/
v.51
no.7
/
pp.60-68
/
2014
In modern electronic warfare systems, a demand on the more accurate estimation method based on TDOA and FDOA has been increased. TDOA/FDOA localization consists of two-stage procedures; the extraction of information from signals, and the estimation of emitter location. CAF(complex ambiguity function) is known as a basic method in the extraction stage. However, when we extract TDOA and FDOA information from VHF(very high frequency) communication signals, conventional CAF algorithms may not work within a permitted time because of much computation. Therefore, in this paper, an improved sequential estimation algorithm based on CAF is proposed for effective calculation of extracting TDOA and FDOA estimates in terms of computational complexity. The proposed method is compared with the conventional CAF-based algorithms through simulation. In addition, we derive the optimal performance based on the CRLB(Cramer-Lao lower bound) to check the extraction performance of the proposed method.
Journal of the Korean Society of Marine Environment & Safety
/
v.27
no.1
/
pp.22-28
/
2021
This is a basic study on the development of deep learning-based algorithms to detect smoke before the smoke detector operates in the event of a ship fire, analyze and utilize the detected data, and support fire suppression and evacuation activities by predicting the spread of smoke before it spreads to remote areas. Proposed algorithms were reviewed in accordance with the following procedures. As a first step, smoke images obtained through fire simulation were applied to the YOLO (You Only Look Once) model, which is a deep learning-based object detection algorithm. The mean average precision (mAP) of the trained YOLO model was measured to be 98.71%, and smoke was detected at a processing speed of 9 frames per second (FPS). The second step was to estimate the spread of smoke using the coordinates of the boundary box, from which was utilized to extract the smoke geometry from YOLO. This smoke geometry was then applied to the time series prediction algorithm, long short-term memory (LSTM). As a result, smoke spread data obtained from the coordinates of the boundary box between the estimated fire occurrence and 30 s were entered into the LSTM learning model to predict smoke spread data from 31 s to 90 s in the smoke image of a fast fire obtained from fire simulation. The average square root error between the estimated spread of smoke and its predicted value was 2.74.
Visual tracking techniques for Augmented Reality are classified as either a marker tracking approach or a natural feature tracking approach. Marker-based tracking algorithms can be efficiently implemented sufficient to work in real-time on mobile devices. On the other hand, natural feature tracking methods require a lot of computationally expensive procedures. Most previous natural feature tracking methods include heavy feature extraction and pattern matching procedures for each of the input image frame. It is difficult to implement real-time augmented reality applications including the capability of natural feature tracking on low performance devices. The required computational time cost is also in proportion to the number of patterns to be matched. To speed up the natural feature tracking process, we propose a novel fast tracking method based on optical flow. We implemented the proposed method on mobile devices to run in real-time and be appropriately used with mobile augmented reality applications. Moreover, during tracking, we keep up the total number of feature points by inserting new feature points proportional to the number of vanished feature points. Experimental results showed that the proposed method reduces the computational cost and also stabilizes the camera pose estimation results.
In this paper, we present a new approach to detect and recognize human face in the image from vision camera equipped on the mobile robot platform. Due to the mobility of camera platform, obtained facial image is small and pose-various. For this condition, new algorithm should cope with these constraints and can detect and recognize face in nearly real time. In detection step, ‘coarse to fine’ detection strategy is used. Firstly, region boundary including face is roughly located by dual ellipse templates of facial color and on this region, the locations of three main facial features- two eyes and mouth-are estimated. For this, simplified facial feature maps using characteristic chrominance are made out and candidate pixels are segmented as eye or mouth pixels group. These candidate facial features are verified whether the length and orientation of feature pairs are suitable for face geometry. In recognition step, pseudo-convex hull area of gray face image is defined which area includes feature triangle connecting two eyes and mouth. And random lattice line set are composed and laid on this convex hull area, and then 2D appearance of this area is represented. From these procedures, facial information of detected face is obtained and face DB images are similarly processed for each person class. Based on facial information of these areas, distance measure of match of lattice lines is calculated and face image is recognized using this measure as a classifier. This proposed detection and recognition algorithms overcome the constraints of previous approach [15], make real-time face detection and recognition possible, and guarantee the correct recognition irregardless of some pose variation of face. The usefulness at mobile robot application is demonstrated.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.