• 제목/요약/키워드: Algorithmic trading

검색결과 6건 처리시간 0.023초

페이스북 딥러닝 알고리즘을 이용한 암호화폐 자동 매매 연구 (Cryptocurrency automatic trading research by using facebook deep learning algorithm)

  • 홍성혁
    • 디지털융복합연구
    • /
    • 제19권11호
    • /
    • pp.359-364
    • /
    • 2021
  • 최근 인공지능의 딥러닝과 머신러닝을 이용한 예측시스템에 관한 연구가 활발히 진행되고 있다. 인공지능의 발전으로 인해 투자관리자의 역할을 인공지능을 대신하고 있으며, 투자관리자보다 높은 수익률로 인해 점차 인공지능으로 거래를 하는 알고리즘 거래가 보편화하고 있다. 알고리즘 매매는 인간의 감정을 배제하고 조건에 따라 기계적으로 매매를 진행하기 때문에 장기적으로 접근했을 때 인간의 매매 수익률보다 높게 나온다. 인공지능의 딥러닝 기법은 과거의 시계열 데이터를 학습하고 미래를 예측하여 인간처럼 학습하게 되고, 변화하는 전략에 대응할 수 있어 활용도가 증가하고 있다. 특히 LSTM기법은 과거의 데이터 일부를 기억하거나 잊어버리는 형태로 최근의 데이터의 비중으로 높여 미래 예측에 사용하고 있다. 최근 facebook에서 개발한 인공지능 알고리즘인 fbprophet은 높은 예측 정확도를 자랑하며 주가나 암호화폐 시세 예측에 사용되고 있다. 따라서 본 연구는 fbprophet을 활용하여 실제 값과 차이를 분석하고 정확한 예측을 위한 조건들을 제시하여 암호화폐 자동매매를 하기 위한 새로운 알고리즘을 제공하여 건전한 투자 문화를 정착시키는 데 이바지하고자 한다.

Prophet 알고리즘을 활용한 가상화폐의 자동 매매 프로그램 개발 (Cryptocurrency Auto-trading Program Development Using Prophet Algorithm)

  • 김현선;안재준
    • 산업경영시스템학회지
    • /
    • 제46권1호
    • /
    • pp.105-111
    • /
    • 2023
  • Recently, research on prediction algorithms using deep learning has been actively conducted. In addition, algorithmic trading (auto-trading) based on predictive power of artificial intelligence is also becoming one of the main investment methods in stock trading field, building its own history. Since the possibility of human error is blocked at source and traded mechanically according to the conditions, it is likely to be more profitable than humans in the long run. In particular, for the virtual currency market at least for now, unlike stocks, it is not possible to evaluate the intrinsic value of each cryptocurrencies. So it is far effective to approach them with technical analysis and cryptocurrency market might be the field that the performance of algorithmic trading can be maximized. Currently, the most commonly used artificial intelligence method for financial time series data analysis and forecasting is Long short-term memory(LSTM). However, even t4he LSTM also has deficiencies which constrain its widespread use. Therefore, many improvements are needed in the design of forecasting and investment algorithms in order to increase its utilization in actual investment situations. Meanwhile, Prophet, an artificial intelligence algorithm developed by Facebook (META) in 2017, is used to predict stock and cryptocurrency prices with high prediction accuracy. In particular, it is evaluated that Prophet predicts the price of virtual currencies better than that of stocks. In this study, we aim to show Prophet's virtual currency price prediction accuracy is higher than existing deep learning-based time series prediction method. In addition, we execute mock investment with Prophet predicted value. Evaluating the final value at the end of the investment, most of tested coins exceeded the initial investment recording a positive profit. In future research, we continue to test other coins to determine whether there is a significant difference in the predictive power by coin and therefore can establish investment strategies.

방향성매매를 위한 지능형 매매시스템의 투자성과분석 (Analysis of Trading Performance on Intelligent Trading System for Directional Trading)

  • 최흥식;김선웅;박성철
    • 지능정보연구
    • /
    • 제17권3호
    • /
    • pp.187-201
    • /
    • 2011
  • 방향성(Direction)과 변동성(Volatility)에 대한 분석은 증권투자를 위한 시장분석의 기초가 된다. 변동성분석이 옵션 투자에서 중요하다면 주식이나 주가지수선물투자는 방향성분석에 의하여 투자성과가 결정된다. 기존의 금융분석에서 기계학습을 이용한 방향성에 대한 연구는 주가나 투자위험의 예측을 중심으로 이루어졌으며, 최근에 와서야 실전투자를 위한 매매시스템(trading system) 개발에 대한 연구가 이루어지고 있다. 인공지능형 주가예측모형에서는 ANN(artificial neural networks), fuzzy system, SVM(Support Vector Machine) 등의 기법이 주로 활용되고 있다. 본 연구에서는 방향성매매를 위한 지능형 기계학습방법 중에서도 패턴인식에서 좋은 성과를 보이고 있는 은닉마코프 모형(Hidden Markov Model)을 이용한다. 실무적으로는 방향성 예측을 위해 주로 주가의 추세분석(Trend Analysis)을 활용한다. 다양한 기술적 지표를 이용한 추세분석에 기반한 시스템트레이딩(System Trading) 기법은 실전투자에서 점차 확대추세에 있다. 본 연구에서는 시스템트레이딩 기법 중 실무에서 많이 이용되는 이동평균교차전략(moving average cross)에 연속 은닉마코프모형을 적용한 지능형 매매시스템을 제안하고, 실제 주가자료를 이용한 시뮬레이션 결과를 제시한다. 세계적 선물시장으로 성장한 KOSPI200 선물시장에서 제안된 매매시스템의 장기간의 투자성과를 분석하기 위하여 지난 21년 동안의 KOSPI200 주가지수자료를 실증 분석하였다. 분석결과는 KOSPI200 주가지수선물의 방향성매매에서 제안된 CHMM기반 지능형 매매시스템이 실전에서 일반적으로 활용되는 시스템트레이딩 기법의 투자성과를 개선할 수 있음을 보여주었다.

디리클레 분포 기반 모델 기여도 예측을 이용한 앙상블 트레이딩 알고리즘 (Ensemble trading algorithm Using Dirichlet distribution-based model contribution prediction)

  • 정재용;이주홍;최범기;송재원
    • 스마트미디어저널
    • /
    • 제11권3호
    • /
    • pp.9-17
    • /
    • 2022
  • 알고리즘을 이용하여 금융 상품을 거래하는 알고리즘 트레이딩은 시장의 많은 요인들로 인해 그 결과가 안정적이지 못한 문제가 있다. 이 문제를 완화시키기 위해 트레이딩 알고리즘들을 조합한 앙상블 기법들이 제안되었다. 하지만 이 앙상블 방법에도 여러 문제가 존재한다. 첫째, 앙상블의 필요 요건인 앙상블에 포함된 알고리즘의 최소 성능 요건(랜덤 이상)을 만족시키도록, 트레이딩 알고리즘을 선택하지 못할 수 있다는 점이다. 둘째, 과거에 우수한 성능을 보인 앙상블 모델이 미래에도 우수한 성능을 보일 것이라는 보장이 없다는 점이다. 이 문제점들을 해결하기 위해 앙상블 모델에 포함되는 트레이딩 알고리즘들을 선택하는 방법을 다음과 같이 제안한다. 과거의 데이터를 기반으로 상위 성능의 앙상블 모델들에 포함된 트레이딩 알고리즘들의 기여도를 측정한다. 그러나 이 과거 데이터에만 기반 된 기여도들은 과거의 데이터가 충분히 많지 않고 과거 데이터의 불확실성이 반영되어 있지 않기 때문에 디리클레 분포를 사용하여 기여도 분포를 근사시키고, 기여도 분포에서 기여도 값들을 샘플하여 불확실성을 반영한다. 과거 데이터로부터 구한 트레이딩 알고리즘의 기여도 분포를 기반으로 Transformer을 훈련하여 미래의 기여도를 예측한다. 예측된 미래 기여도가 높은 트레이딩 알고리즘들을 앙상블 모델에 선택하여 포함시킨다. 실험을 통하여 제안된 앙상블 방법이 기존 앙상블 방법들과 비교하여 우수한 성능을 보임을 입증하였다.

변동성 돌파 전략을 사용한 S&P 500 지수의 자동 거래와 매수 및 보유 비교 연구 (Comparative Study of Automatic Trading and Buy-and-Hold in the S&P 500 Index Using a Volatility Breakout Strategy)

  • 홍성혁
    • 사물인터넷융복합논문지
    • /
    • 제9권6호
    • /
    • pp.57-62
    • /
    • 2023
  • 본 연구는 미국 S&P 500 지수를 변동성 돌파 전략을 활용하여 Buy and Hold 방식과 비교 분석한 연구이다. 변동성 돌파 전략은 시장의 상대적 안정 또는 집중된 시기 후의 가격 움직임을 활용하는 거래 전략이다. 특히, 낮은 변동성 기간 후에 큰 가격 움직임이 더 자주 발생한다는 것이 관찰된다. 주식이 한동안 좁은 가격 범위에서 움직이다가 가격이 갑작스레 상승 또는 하락하는 경우, 그 주식이 해당 방향으로 계속 움직일 것으로 예상된다. 이러한 움직임을 활용하기 위해 거래자들은 변동성 돌파 전략을 채택한다. 'k' 값은 최근 시장 변동성의 측정값에 곱하는 배수로서 활용된다. 변동성의 측정 방법 중 하나로는 최근 거래일의 최고가와 최저가 차이를 나타내는 평균 진정 범위(ATR)가 있다. 'k' 값은 거래자들이 거래 임계값을 설정하는 데 중요한 역할을 한다. 본 연구는 'k' 값을 일반적인 값으로 연산하여 Buy and Hold 전략과 수익률을 비교 하여, 변동성 돌파전략을 사용한 알고리즘 트레이딩이 약간은 높은 수익률을 이룩하였다. 추후에는 인공 지능 딥러닝 기법을 이용하여 S&P 500 지수의 자동 거래를 위한 최적의 K 값을 구하고, 이를 통해 수익률을 극대화하기 위한 시뮬레이션 결과를 제시할 예정이다.

Performance Analysis of Trading Strategy using Gradient Boosting Machine Learning and Genetic Algorithm

  • Jang, Phil-Sik
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권11호
    • /
    • pp.147-155
    • /
    • 2022
  • 본 연구에서는 그래디언트 부스팅 기계학습과 유전 알고리즘을 이용하여 일별 주식 포트폴리오를 동적으로 구성하는 시스템을 구축하고 트레이딩 시뮬레이션을 통해 성능을 분석하였다. 이를 위해 유가증권시장과 코스닥시장에 상장된 종목들의 가격 데이터 및 투자자별 거래정보를 포함한 다양한 데이터를 수집하고, 전처리 과정과 변수가공을 통해 학습-예측에 이용될 변수들을 생성하였다. 첫 번째 실험에서는 예측정확도와 정밀도, 재현율 및 F1 점수 등 네 가지 지표를 활용하여 그래디언트 부스팅 기법들(XGBoost, LightGBM, CatBoost)의 성능을 비교 평가하였다. 두 번째 실험에서는 전 단계에서 선택된 LightGBM과 유전 알고리즘을 적용하여 상장 종목들의 일별 수익 여부를 학습-예측하였다. 그리고 예측된 수익 발생확률을 바탕으로 종목을 선별하여 트레이딩 시뮬레이션을 시행하고, CAGR, MDD, 사프지수 및 변동성 측면에서 코스피, 코스닥 지수와의 성능을 비교 평가하였다. 분석 결과, 제안된 전략들 모두 네 가지 성능평가 지표상에서 시장 평균을 넘어서는 것으로 나타났으며, 그래디언트 부스팅과 유전 알고리즘의 결합이 주식 가격 예측에 효과적으로 이용될 수 있음을 보여주었다.